Graphics (INFOGR 2017-2018) - Midterm Exam

Tuesday May 22 ${ }^{\text {nd }}, 08.30$ - 10.30 - EDUC-BETA

- Write your answers, along with solution steps, on the supplied answer sheets.
- State your name and student ID at the top of every answer sheet you want to turn in.
- Write clearly: we cannot allocate points for answers that we cannot read.
- No documents allowed. Use of all electronic devices is forbidden.
- If a question is unclear to you, write down how you interpret the question, then answer it.
- The font used for this exam is OpenDyslexic, for your comfort.

PART 1 - MATH - max 36 points

1. $\left[2+5=7\right.$ points] Given are two points: $P=(1,2,3)$ and $Q=(5,10,11)$ in \mathbb{R}^{3}, which lie on line L.
a. Write down the general implicit equation of a plane perpendicular to line L.

$$
x+2 y+2 z+D=0
$$

b. We draw a line from point $R=(3,8,5)$ that is perpendicular to line L, intersecting it at point S. Calculate the length of line segment $R S$.

$$
\sqrt{8}=2 \sqrt{2}
$$

2. $\left[3+3=6\right.$ points] Consider three points in $\mathbb{R}^{2}: A=(1,1), B=(-3,4)$ and $C=(1,7)$.
a. We place a light at point C. What is the length of the

$$
\frac{28}{3}=9 \frac{1}{3}
$$ shadow of the line segment $A B$ on the x-axis?

b. We place a camera at point B, viewing line segment $A C$, rendering it on the y-axis as the one-dimensional 'screen' as $A^{\prime} C^{\prime}$. What is the $9 / 2=4.5$ length of the line segment $A^{\prime} C^{\prime}$?
3. $\left[1+5+3=9\right.$ points] Given: a sphere in \mathbb{R}^{3}, with centre $C=(3,3,3)$ and a point on the surface of the sphere: $P=(2,5,1)$.
a. Write down the implicit eq. for the sphere.

$$
(x-3)^{2}+(y-3)^{2}+(z-3)^{2}=9
$$

b. Calculate the point on the surface of the sphere closest to $(6,9,1)$. (30/7, 39/7, 15/7)
c. Unit vector $\hat{u}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is a tangent vector of the sphere at point P. Calculate the bitangent vector of the sphere at point P.

$$
\left[\frac{2 \sqrt{2}}{3}, \frac{1}{3 \sqrt{2}}, \frac{-1}{3 \sqrt{2}}\right]
$$

4. [4 points] We define a coordinate system in \mathbb{R}^{2} (i.e., x - and y-axes and the origin). Draw this coordinate system and shade the region for which two conditions hold: $x+y>1$ and $x+1<y$.

5. [3 points] Write down the implicit equation of the tangent plane to the sphere $(x-3)^{2}+(y-4)^{2}+z^{2}=9$ at point $P=(5,5,2) . \quad 2 x+y+2 z-\mathbf{1 9}=\mathbf{0}$
6. $\left[2+1+4=7\right.$ points] Consider Figure 1 below, which depicts a situation in \mathbb{R}^{2}. Given:

- Line P, defined as $x-2 y+1=0$ and line Q, defined as $y-2 x-3=0$
- Points A and B on line Q. The location of A is $(0,3)$. The length of line $A B$ is w.
- The points A and B are projected onto line P at A^{\prime} and B^{\prime} respectively, i.e. $A A^{\prime}$ and $B B^{\prime}$ are both perpendicular to line P.

a. Calculate the length of line segment $A A^{\prime}$.
b. Determine the location of point A^{\prime}.
c. Express the length of $A^{\prime} B^{\prime}$ as a function of w.
$4 w / 5$

PART 2 - THEORY - max 10 points
7. [6 points] A texture is stored as a palettized image. The dimensions of the texture are 512×512 pixels, and it uses exactly 256 unique colors. How much memory (in bytes) is needed to store this texture?

$$
512^{2}+1024 \text { or } 512^{2}+768
$$

8. [4 points] Complete the following sentence. Write down the four terms that complete the sentence on your answer sheet.
"The flickering and Moiré-patterns we see on distant textured objects are symptoms of UNDERSAMPLING. This problem can be reduced by using MIPMAPPING. When a textured object is close to the camera, the texture may appear blocky. This is caused by OVERSAMPLING. We can smooth out the blocky texture using BILINEAR INTERPOLATION.
