
MID-EXAM ADVANCED MECHANICS - with answers
12 DECEMBER 2019, 13:30-15:30 hours

Three problems (all items have a value of 10 points)

Remark 1 : Answers may be written in English or Dutch.
Remark 2: Write answers of each problem on separate sheets.

Problem 1

A point mass m is threaded on a frictionless circular wire hoop of radius b. The hoop lies
in a vertical plane, which rotates about the hoop’s vertical diameter with a constant angular
velocity ω. The position of the point mass is specified by the angle θ measured up from the
vertical (see figure).

a. Draw all the forces (physical and inertial) acting on the point in a reference frame rotat-
ing with the hoop. Be clear about the names and directions of these forces.

b. Show that the equations of motion (in the same reference frame) are, in polar coordi-
nates,

r̈ = 0

θ̈ =
(
ω2 cos θ − g

b

)
sin θ

c. From now on we are going to consider only the second equation of motion, as there is no
motion in the radial direction. It is easy to prove that θ∗ = 0 is an equilibrium position
for the point mass. Find the other equilibria (in case they exist), or demonstrate that
there are no other equilibria.

d. Consider an initial condition θ0 << 1 and θ̇(t = 0) = 0. Derive the solution of the
equation of motion.
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Solution
a. The forces acting on the point mass, assuming that it is moving anti-clockwise, are drawn

in the figure below. Note that FCoriolis and FN2 , respectively pointing outside and inside
the plane xz (along−y and y), are also applied to the point mass. FN and FN2 represent
the normal forces exerted by the hoop. The centripetal force is not an actual force, but
rather the resultant force between the radial components of Fg and Fcentrif and FN . As
we will see in the next item, such force is not zero, as long as the point is moving along
the hoop.

b. The problem can be solved in polar or cartesian coordinates. In both cases, we will make
use of equation FC 5.3.2 (be careful with the signs):

ma′ = F−mA0 + FCoriolis + Ftrans + Fcentrif (1)

where the resultant of the physical forces is given by

F = Fg + FN + FN2

and the inertial forces

FCoriolis = −2mω×v′

Ftrans = −mω̇×r′ = 0 as ω = const.

Fcentrif = −mω×(ω × r′)

mA0 = 0 as the reference frame is not trasnslating respect to the inertial system.

Remember that ω is the angular velocity of the rotating system (the hoop) and r′ and v′

represent, respectively, position and velocity of the point in the rotating reference frame.
Notice that v′ 6= 0, as the point is moving respect to the hoop (in the most general case).
Since the point is not moving in the direction perpendicular to the hoop

FCoriolis = −FN2 (2)
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Polar coordinates

The plane in which in motion takes place is xz. Therefore, we can solve the equation of
motion in this plane and consider a coordinate system

r′ =

(
r
θ

)
where we dropped the primes to simplify the notation. With this choice of coordinates,
the acceleration can be written as (see equation sheet)

a′ =

(
r̈ − rθ̇2
rθ̈ + 2ṙθ̇

)
As we know that the point moves along the hoop, r will stay constant throughout the
motion, in particular r = b. Therefore

r̈ = ṙ = 0

which is our first result. Hence, the acceleration can be rewritten as

a′ =

(
−bθ̇2
bθ̈

)
(3)

In order to write down the equations of motion we need to express the forces in radial
components and in terms of b and θ.

|Fcentrif | = | −mω×(ω × r′)| = mω2b sin (π − θ) = mω2b sin θ

|Fg| = mg

|FN | = FN

If we project the three forces on the directions of r and θ, we obtain

F
(r)
centrif = mω2b sin2 θ F

(θ)
centrif = mω2b sin θ cos θ

F (r)
g = mg cos θ F (θ)

g = −mg sin θ

F
(r)
N = −FN F

(θ)
N = 0

We can insert the equations above, together with equation (3), in the vectorial equation
of motion (1) and obtain

−mbθ̇2 = mω2b sin2 θ +mg cos θ − FN
mbθ̈ = mω2b sin θ cos θ −mg sin θ

From the second equation we can obtain the desired second result

θ̈ =
(
ω2 cos θ − g

b

)
sin θ (4)

Notice the the first equation indicates that the force along the r-direction is generally
not zero. The result force is indeed necessary for the point to move along the hoop
(centripetal force).
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Cartesian coordinates

The position vector of the system can be written as

r′ =

x′y′
z′

 =

 b sin θ
0

−b cos θ


where, once more, we dropped the primes. Notice that, since the reference frame is
rotating with the hoop, the point will not move along the y−direction. Indeed, the
forces along this direction balance out (see equation (2)). Again, we need to find the
acceleration vector and then the forces expressed in cartesian coordinates. We have

ṙ′ =

bθ̇ cos θ0

bθ̇ sin θ


and

r̈′ =

bθ̈ cos θ − bθ̇2 sin θ0

bθ̈ sin θ + bθ̇2 cos θ

 (5)

The forces read

Fcentrif = −mω×(ω × r′) = −mω×

 0
ωb sin θ

0

 = −m

−ω2b sin θ
0
0



Fg =

 0
0
−mg


FN =

−FN sin θ
0

FN cos θ


We can insert the equations above, together with equation (5), in the vectorial equation
of motion (1) and obtain (for the motion along x and z)

mbθ̈ cos θ −mbθ̇2 sin θ = mω2b sin θ − FN sin θ

mbθ̈ sin θ +mbθ̇2 cos θ = −mg + FN cos θ

If we multiply the first equation by cos θ and the second one by sin θ and then sum them,
we obtain

mbθ̈ = mω2b sin θ cos θ −mg sin θ,

which again brings to the desired result.
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c. An equilibrium point is any value of θ (let’s call it θ0) satisfying the following condition:
if the point is placed at rest (θ̇(t = 0) = 0) at θ(t = 0) = θ0, then it will remain at
rest at θ0 for all times. This condition is guaranteed if θ̈ = 0, as, in this case, the rest
condition does not change. Therefore, in order to find the equilibria of the system, we
need to impose(

ω2 cos θ − g

b

)
sin θ = 0

The equation above is satisfied if

sin θ = 0

which, in the interval θ ∈ [0, 2π), has θ1 = 0 and θ2 = π as solutions. Other solutions
can be found by solving(

ω2 cos θ − g

b

)
= 0 ⇒ cos θ =

g

ω2b

The last equation has solutions as long as g
ω2b
≤ 1 and they can be written as

θ3,4 = ± arccos
( g

ω2b

)
To summarise, the equilibria are

θ1 = 0, θ2 = π if ω2 < g/b

θ1 = 0, θ2 = π, θ3,4 = ± arccos
( g

ω2b

)
if ω2 ≥ g/b

d. When θ0 << 1, we can write

θ = 0 + θ′

where θ′ is small. Therefore, we can expand (4) with the Taylor series of the trigono-
metric functions and obtain, at the first order,

θ̈′ =
(
ω2 − g

b

)
θ′

To be able to solve this equation, we need to consider three different cases

1. ω2 − g
b
= −α2 < 0

The equation of motion can be written as

θ̈′ = −α2θ′

and its general solution reads

θ′(t) = A cos (αt) +B sin (αt)

where A and B are constants to be determined using the initial conditions θ′(0) =
θ0 and θ̇′(0) = 0. The final solution is

θ′(t) = θ0 cos (αt)

The equilibrium is therefore stable and the point will oscillate (with a small ampli-
tude θ0) around it.
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2. ω2 − g
b
= α2 > 0

The equation of motion can be written as

θ̈′ = α2θ′

and its general solution reads

θ′(t) = A exp (αt) +B exp (−αt)

The final solution is

θ′(t) =
θ0
2
[exp (αt) + exp (−αt)] = θ0 cosh (αt)

The equilibrium is unstable in this case: the point will accelerate away from the
bottom. Note that this solution is valid only for small angles.

3. ω2 − g
b
= α2 = 0

In this case

θ̈′ = 0

The general solution is

θ′(t) = A+Bt

and the final result is

θ′(t) = θ0

The point will simply stay at θ0.
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Problem 2

Two point masses m are, by means of rigid massless rods, connected to the edge of a flat disk
(radius a and mass 3m, homogeneous mass distribution ρ). The length of each rod is a/2 (see
situation sketch). Choose the x- and y-axis in the plane of the disk, the z-axis perpendicular to
the disk and take as the origin the center of mass of the disk.

a. Demonstrate that the moment of inertia tensor of this object, in the given coordinate
system, can be written as Ixx 0 Ixz

0 Iyy 0
Ixz 0 Izz


and express the components Ixx, Iyy, Izz and Ixz in terms of a and m.

b. Calculate the angular momentum vector of the object in the case that it rotates about the
z-axis with angular velocity ω.

c. Calculate the torque that is required to maintain the rotation about the z-axis.

d. Find the principal axes of rotation of the object, as well as the corresponding principal
moments of inertia. Explain the physical meaning of principal axes.
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Problem 3

Consider a central force F = f(r)r
r

and velocity vector v in R3.

a. Find the components of the antisymmetric part of dyad Fv.

b. Calculate ε3
... ε3 ,

i.e., the three-fold contraction of the ε3 tensor with itself.
Explain how you obtain your answer.

c. Calculate Grad F.
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