SAMPLE FINAL EXAM ADVANCED MECHANICS, January 2020, time: 2 hours

 Three problems (all items have a value of 10 points)Remark 1 : Answers may be written in English or Dutch.
Remark 2: Write answers of each problem on separate sheets and add your name on them.

Problem 1

Three point masses m_{1}, m_{2} and m_{3} move in a three-dimensional space under influence of only gravitational forces that they exert on each other. The gravitational potential energy due to two point masses i and j is given by

$$
V_{i j}=\frac{-G m_{i} m_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|},
$$

where G is the universal gravitational constant and \mathbf{r}_{i} the position vector of point mass m_{i}. Use as generalised coordinates the cartesian coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ of each mass point with respect to a fixed origin.
a. Find the Hamiltonian function H for this system.
b. Derive the Hamiltonian canonical equations for coordinate x_{1} and its associated conjugate momentum $p_{1, x}$, where $p_{1, x}$ is the x-component of \mathbf{p}_{1}.
(If you do not have the answer of item a, use

$$
H=\alpha p_{1, x}^{2}+\beta p_{1, x}+\frac{\gamma}{\left(\left(x_{1}-\hat{x}\right)^{2}+\rho^{2}\right)^{1 / 2}},
$$

where $\alpha, \beta, \gamma, \hat{x}$ and ρ are constants.)
c. How many of Hamilton's canonical equations of this system are independent?

Explain your answer.

See next page for problem 2

Problem 2

A coin is steadily rolling on a perfectly rough surface (see figure). The coin is a thin circular disk with radius a, mass m, moment of inertia I with respect to axes in the plane of the coin and moment of inertia I_{s} along its symmetry axis.

The velocity of the centre of mass of the coin is $\mathbf{v}_{c m}$ and its angular velocity is $\boldsymbol{\omega}$. The contact point between the coin and the surface is denoted by P and the origin O is at the centre of mass of the coin. Unit vector j^{\prime} is in the direction from P to O, unit vector \mathbf{k}^{\prime} is along the symmetry axis of the coin and rolling occurs in the direction opposite to that of unit vector $\mathbf{i}^{\prime}=\mathbf{j}^{\prime} \times \mathbf{k}^{\prime}$. Finally, unit vector \mathbf{k} points in the vertical direction and \mathbf{g} is gravity.

a. The condition of perfect rolling means that the velocity in contact point P is zero.

Use this to show that

$$
\mathbf{v}_{c m}=-\mathbf{i}^{\prime} a \omega_{z^{\prime}}+\mathbf{k}^{\prime} a \omega_{x^{\prime}}
$$

where $\omega_{x^{\prime}}=\boldsymbol{\omega} \cdot \mathbf{i}^{\prime}$ and $\omega_{z^{\prime}}=\boldsymbol{\omega} \cdot \mathbf{k}^{\prime}$.
b. The angular velocity components are given by

$$
\omega_{x^{\prime}}=\dot{\theta}, \quad \omega_{y^{\prime}}=\dot{\phi} \sin \theta, \quad \omega_{z^{\prime}}=\dot{\psi}+\dot{\phi} \cos \theta
$$

with θ, ϕ and ψ the Eulerian angles. The meaning of θ is given in the figure.
Give the definition of angles ϕ and ψ and make a figure in which you sketch ϕ and ψ.
c. Use the Lagrange formalism to show that the equations for the rolling coin read

$$
\begin{aligned}
& \left(I+m a^{2}\right) \ddot{\theta}=I \dot{\phi}^{2} \sin \theta \cos \theta-\left(I_{s}+m a^{2}\right) S \dot{\phi} \sin \theta-m g a \cos \theta, \\
& \frac{d}{d t}\left[I \dot{\phi} \sin ^{2} \theta+\left(I_{s}+m a^{2}\right) S \cos \theta\right]=0 \\
& \frac{d S}{d t}=0
\end{aligned}
$$

with $S=\dot{\psi}+\dot{\phi} \sin \theta$.
d. Note that $\theta=\pi / 2$ (upright rolling coin), $\phi=0$ and $S=$ constant is a solution of the equations of motion in item c.
Under what condition(s) is this a stable solution?
Hint: substitute $\theta=(\pi / 2)+\theta^{\prime}, \phi=\phi^{\prime}$, with $\theta^{\prime} \ll 1$ and $\phi^{\prime} \ll 1$, in the equations of motion and maintain only terms that are linear in θ and in ϕ^{\prime}.

See next page for problem 3

Problem 3

A light elastic spring of stiffness K is clamped at its upper end and supports a particle of mass m at its lower end. A second spring of stiffness K is fastened to the particle and, in turn, supports a particle of mass $2 m$ at its lower end. Note: the system in its equilibrium configuration is subject only to gravitational force.

a. Find the normal frequencies of the system for vertical oscillations about the equilibrium configuration.
b. Find the normal coordinates.

If you have no answer of item a, describe the method to find these coordinates.
c. Determine the general solution for $x_{1}(t), x_{2}(t)$.

If you have no answer to item b, describe the method to find this solution.

END

Equation sheet Advanced Mechanics for final exam (version 2019/2020)

A1. Goniometric relations:

$$
\begin{array}{ll}
\cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha, & \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\sin (2 \alpha)=2 \sin \alpha \cos \alpha, & \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta
\end{array}
$$

A2. Spherical coordinates r, θ, ϕ :

$$
\begin{aligned}
& x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta \\
& d x d y d z=r^{2} \sin \theta d r d \theta d \phi \\
& \mathbf{v}=\mathbf{e}_{r} \dot{r}+\mathbf{e}_{\theta} r \dot{\theta}+\mathbf{e}_{\phi} r \dot{\phi} \sin \theta \\
& \begin{aligned}
& \mathbf{a}=\mathbf{e}_{r}\left(\ddot{r}-r \dot{\phi}^{2} \sin ^{2} \theta-r \dot{\theta}^{2}\right)+\mathbf{e}_{\theta}\left(r \ddot{\theta}+2 \dot{r} \dot{\theta}-r \dot{\phi}^{2} \sin \theta \cos \theta\right) \\
&+\mathbf{e}_{\phi}(r \ddot{\phi} \sin \theta+2 \dot{r} \dot{\phi} \sin \theta+2 r \dot{\theta} \dot{\phi} \cos \theta)
\end{aligned}
\end{aligned}
$$

A3. Cylindrical coordinates R, ϕ, z :

$$
\begin{array}{ll}
x=R \cos \phi, & y=R \sin \phi, \\
d x d y d z=R d R d \phi d z & z=z \\
\mathbf{v}=\mathbf{e}_{R} \dot{R}+\mathbf{e}_{\phi} R \dot{\phi}+\mathbf{e}_{z} \dot{z} \\
\mathbf{a}=\mathbf{e}_{R}\left(\ddot{R}-R \dot{\phi}^{2}\right)+\mathbf{e}_{\phi}(2 \dot{R} \dot{\phi}+R \ddot{\phi})+\mathbf{e}_{z} \ddot{z} &
\end{array}
$$

A4. $\quad \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$
A5. $\quad(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}=(\mathbf{B} \times \mathbf{C}) \cdot \mathbf{A}=(\mathbf{C} \times \mathbf{A}) \cdot \mathbf{B}$
A6. $\quad\left(\frac{d \mathbf{Q}}{d t}\right)_{\text {fixed }}=\left(\frac{d \mathbf{Q}}{d t}\right)_{\text {rot }}+\boldsymbol{\omega} \times \mathbf{Q}$

B1. Noninertial reference frames:

$$
\begin{aligned}
& \mathbf{v}=\mathbf{v}^{\prime}+\boldsymbol{\omega} \times \mathbf{r}^{\prime}+\mathbf{V}_{0} \\
& \mathbf{a}=\mathbf{a}^{\prime}+\dot{\boldsymbol{\omega}} \times \mathbf{r}^{\prime}+2 \boldsymbol{\omega} \times \mathbf{v}^{\prime}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \mathbf{r}^{\prime}\right)+\mathbf{A}_{0}
\end{aligned}
$$

C1. Systems of particles:

$$
\sum_{i} \mathbf{F}_{i}=\frac{d \mathbf{p}}{d t}, \quad \frac{d \mathbf{L}}{d t}=\mathbf{N}
$$

C2. Angular momentum vector: $\mathbf{L}=\mathbf{r}_{\mathrm{cm}} \times m \mathbf{v}_{c m}+\sum_{i} \bar{r}_{i} \times m_{i} \bar{v}_{i}$
where $\overline{\mathbf{r}}_{i}=\mathbf{r}_{i}-\mathbf{r}_{c m}, \overline{\mathbf{v}}_{i}=\mathbf{v}_{i}-\mathbf{v}_{c m}$
C3. Equations of motion for 2-particle system with central force:

$$
\mu \frac{d^{2} \mathbf{R}}{d t^{2}}=f(R) \frac{\mathbf{R}}{R}
$$

with $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ the reduced mass, \mathbf{R} relative position vector.

C4. Motion with variable mass:

$$
\mathbf{F}_{e x t}=m \dot{\mathbf{v}}-\mathbf{V} \dot{m}
$$

with \mathbf{V} velocity of Δm relative to m.

D1. Moment of inertia tensor:

$$
\mathbf{I}=\sum_{i} m_{i}\left(\mathbf{r}_{i} \cdot \mathbf{r}_{i}\right) \mathbf{1}-\sum_{i} m_{i} \mathbf{r}_{i} \mathbf{r}_{i}
$$

D2. Moment of inertia about an arbitrary axis: $I=\tilde{\mathbf{n}} \mathbf{I} \mathbf{n}=m k^{2}$
D3. Formulation for sliding friction: $F_{P}=\mu_{k} F_{N}$
D4. Impulse and rotational impulse: $\mathbf{P}=\int \mathbf{F} d t=m \Delta \mathbf{v}_{c m}, \quad \int N d t=P l$ with l the distance between line of action and the fixed rotation axis.

E1. Transformation rule components of a real cartesian tensor, rank p, dimension N :

$$
T_{i_{1} i_{2} \ldots i_{p}}^{\prime}=\alpha_{i_{1} j_{1}} \alpha_{i_{2} j_{2}} \ldots \alpha_{i_{p} j_{p}} T_{j_{1} j_{2} \ldots j_{p}}
$$

F1. Euler equations: $N_{1}=I_{1} \dot{\omega}_{1}+\omega_{2} \omega_{3}\left(I_{3}-I_{2}\right)$
(other equations follow by cyclic permutation of indices)

G1. Lagrange's equations (first kind):
$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=\frac{\partial L}{\partial q_{i}}+\lambda_{k} \frac{\partial f_{k}}{\partial q_{i}}$
with $f_{k}\left(q_{1}, q_{2}, \ldots, q_{n}, t\right)=0$ constraints.
G2. Hamilton's variational principle:
$\delta \int_{t_{1}}^{t_{2}} L d t=0$
G3. Hamiltonian function:
$H=p_{i} \dot{q}_{i}-L$
G4. Hamilton's canonical equations:
$\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}, \quad \dot{q}_{i}=\frac{\partial H}{\partial p_{i}}$

