
SAMPLE MID-EXAM ADVANCED MECHANICS,
DECEMBER 2019, time: 2 hours

Three problems (all items have a value of 10 points)

Remark 1 : Answers may be written in English or Dutch.
Remark 2: Write answers of each problem on separate sheets.

Problem 1

Consider a circular disk (radius a) that is rotating clockwise about a vertical axis through the
middle O′ of the disk with constant angular velocity ω. On this disk, a thin, hollow, straight
and rigid tube is mounted that has a minimum distance d to the rotation axis (see figure).
At time t = 0 a mass point m is released at one end of the tube with an initial velocity u′0 (with
respect to the rotating frame) into the tube.

a. Show that the equations of motion for the mass point in the x′ − y′-plane rotating with
the disk read

ẍ′ = α2 x′ , 0 = FN + βẋ′ + γ ,

where FN is a reactive force and α, β, γ are constants.
Express α, β, γ in terms of the given parameters.

b. Explain physically why there is in general a nonzero reactive force FN .
Discuss also the direction of this force.

c. Find the path x′(t) of the mass point.

d. Derive and use the energy balance to show that the the mass point can only reach the
other end of the tube if its total energy is positive.
Explain the physical meaning of this result.
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Solution
a. Start from F = ma in the inertial frame and use the relation between a and a′ (see

equation sheet):

ma′ = F−mω̇ × r′ − 2mω × v′ −mω × (ω × r′)−mA0 .

In the primed rotating coordinate system ω̇ = 0 and ω = (0, 0, ω) (fixed rotation about
vertical axis), r′ = (x′, d, 0), v′ = (u′, 0, 0), a′ = (ẍ, 0, 0) (mass point in the tube)
and A0 = 0 (fixed origin O’). Furthermore, F = (0, FN ,−mg + R) (only real force is
gravity, FN and R are reactive forces in the y′ and z′ direction.
Development of the third and fourth term on the right-hand side (use the determinant
rule to evaluate the cross products) yields

−2mω × v′ = (0,−2mωu′, 0) and −mω × (ω × r′) = (mω2x′,mω2y′, 0).

Collection of terms along the x′ and y′-axis yields

mẍ = mω2x′ 0 = FN − 2mωu′ +mω2d ,

so α = ω, β = −2mω, γ = mω2d.

b. From given equation: 0 = FN + βẋ + γ: reactive force FN results from joint action of
Coriolis force (second term in the equation) and the centrifugal force (third term).
Since the rotation is anticlockwise, the Coriolis force acts to the right on the moving
mass point (resulting in a reactive force in the positive y′ direction), whilst the centrifugal
force is directed away from the rotation axis and results in a negative reactive force.
Whether FN is positive or negative depends on the velocity u′, the angular velocity ω
and the distance of the mass point to the rotation axis.

c. General solution:

x′(t) = A exp(α1/2t) +B exp(−α1/2t) .

Determine A and B from initial conditions x′(t = 0) = −(a2− d2) and ẋ′(t = 0) = u′0.
This yields

A = −1

2

[
(a2 − d2)1/2 − u′0

α

]
, B = −1

2

[
(a2 − d2)1/2 +

u′0
α

]
,

so

x′(t) = −(a2 − d2)1/2 cosh(α1/2t) +
u′0
α

sinh(αt) .

d. Energy equation: multiply momentum equation in x′ direction by mẋ′. This yields(
dE

dt

)
rot

= 0 , E =
1

2
mẋ2 − 1

2
mα2x′2,

with E the total energy that consists of kinetic energy and potential energy related to the
centrifugal force.
For the mass point to reach the other end of the tube, it should have kinetic energy for
all positions within the tube. Kinetic energy reaches its minimum Tmin where potential
energy reaches its maximum, i.e., in x′ = 0: here Tmin = E. The condition is thus
E > 0. Reason: the mass point has to overcome the centrifugal bulge.
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Problem 2

A carpet of mass M is rolled into a hollow cylinder of internal radius a/4, external radius a
and height h.

a. Choose the principal axes of the cylinder as coordinate axes (see figure above). De-
termine the components of the moment of inertia tensor with respect to this coordinate
system. Show that the chosen axes correspond to the principal axes.

b. Once the carpet is put on the floor, in order to unroll it, a kick is given to it in a direction
perpendicular to the axis of the cylinder. The kick can be represented as an horizontal
impulsive force P. What is the height d at which the force needs to be applied, for the
carpet to start rolling without sliding?

c. The carpet material has a certain thickness (to be assumed negligible), and, as it starts to
unroll, the rolled part of the carpet will still be in the shape of a hollow cylinder, although
its (external) radius will reduce in time. The unrolled part stays on the ground. The total
energy of the system is conserved during its motion. Why is that the case? What about
the angular momentum calculated respect to the center of the cylinder?

d. Determine the velocity of the centre of mass and the angular velocity of the carpet when
the radius of the unrolled part becomes a/3. You don’t need to finalise all the calcula-
tions, but rather mention all the equations needed to obtain the result.
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Solution
a. In order to compute the components of the tensor of inertia of a hollow cylinder, it is

convenient to express the mass of the cylinder as a function of and h and the two radii

M = ρhπ(r22 − r21),

where r2 is the external radius and r1 the internal one. The mass element, in polar
coordinates, can be written as

dm = ρr dr dy dθ.

We are now ready to calculate the moments of inertia

Iyy =

∫
(x2 + z2) dm = ρ

∫ h/2

−h/2

∫ r2

r1

∫ 2π

0

r2r dy dr dθ

= 2πρh

(
r42
4
− r41

4

)
=

1

2
M(r22 + r21),

Ixx =

∫
(y2 + z2) dm = ρ

∫ h/2

−h/2

∫ r2

r1

∫ 2π

0

(y2 + r2 sin2 θ) r dy dr dθ

= 2πρ

(
r22
2
− r21

2

)(
(h/2)3

3
− (−h/2)3

3

)
+ ρh

(
r42
4
− r41

4

)
π

=
1

12
Mh2 +

1

4
M(r22 + r21),

Ixx = Izz.

To prove the last equation, we only need to notice that∫ 2π

0

sin2 θ dθ =

∫ 2π

0

cos2 θ dθ.

The products of inertia Ixy and Iyz are zero, as they both contain an integral over the
interval [0, 2π] of either cos θ or sin θ. The term Ixz contains an integral of the function
sin θ cos θ = sin(2θ), which is also zero. In conclusion, the moment of inertia tensor for
a hollow cylinder reads

I =
1

2
M

1
6
h2 + 1

2
(r22 + r21) 0 0
0 r22 + r21 0
0 0 1

6
h2 + 1

2
(r22 + r21)

 .

The moments of inertia, respectively of the carpet completely unrolled (I1) and of the
carpet in the final position (I2) (see item c), relative to a rotation about the y−axis are

I1 =
17

32
M1a

2 I2 =
25

288
M2a

2,

where

M1 =
5

16
ρhπa2, M2 =

7

144
ρhπa2.
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b. When the kick is given to the carpet, the velocity of its center of mass will change,
according to the equation

vcm =
P

M1

,

where all the quantities are scalar, as their only component is along the x−axis. Simi-
larly, the angular velocity becomes

ω =
P (d− a)

I1
.

Here, it is used that (d − a) is the distance between the line of action and the rotation
axis (see figure above). Since the carpet starts rolling without sliding, there is a relation
between angular velocity and velocity of the centre of mass

vcm = aω.

Using the equations above, we can find a condition for d

P (d− a)a

I1
=

P

M1

,

which leads to d = 49
32
a.

c. The total energy of the system is composed of kinetic and potential energy. There is
no friction in the system, except for a force FP that provides for the rolling; the work
done by this force results in a time change of rotational kinetic energy (compare with
the problem in FC section 8.6). Thus, total energy is conserved.

For the conservation of the angular momentum to hold, we need the total torque to be
zero during the motion of the carpet. However, the frictional force FP exerts a torque,
because the point of application of this force is on the ground, at a certain distance from
the unrolled carpet. Moreover, the gravitational force acting on the rolled part of the
carpet exerts a torque. Therefore, the angular momentum is not conserved.

d. In order to find the final velocities, we can make use of the conservation of energy

T1,rot + T1,trans + V1 = T2,rot + T2,trans + V2 + Vunrolled,

where the terms at the left hand side refer to the carpet when completely rolled, the first
three terms at the right hand side refer to the part of the carpet which is still rolled in the
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final position and the last term is the potential energy of the unrolled part (lying on the
ground). We know that

Ti,rot =
1

2
Iiω

2
i , i = 1, 2,

Ti,trans =
1

2
Miv

2
i,cm, i = 1, 2,

V1 = M1 ga,

V2 = M2 g
a

3
,

Vunrolled = 0.

Moreover, the conditions of pure rolling read

v1,cm = ω1a v2,cm = ω2
a

3
.

Knowing that the initial velocity is v1,cm = P/M1, we can calculate v2,cm using the
equations above and compute ω2 = v2,cm

a/3
.
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Problem 3

Consider the moment of inertia tensor I for a single mass point in R3.

a. Write it as the sum of an isotropic tensor Î and a tensor I′ with zero trace.
Explain how you obtain your answer.
Explain how you obtain your answer.

b. Calculate the vector divergence of I.

c. Determine the rank and components of tensor T = ε3 : I.
Explain how you obtain your answer.
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Solution
a. For a single mass point I = m(r2 1− rr).

Write it as I = Î + I′, where all tensors are real and have rank 2.
The isotropic tensor Î = µ1, where µ is a scalar to be determined and I the unit tensor.
This implies that

I′ = I− µ1 .

The condition trace(I′)=0 yields

trace(I)− trace(µ1) = 0. or m(3r2 − r2)− 3µ = 0 .

From this, it follows µ = 2
3
mr2, hence

Î =
2

3
mr2 , I′ = m

(
1

3
r2 1− rr

)
.

b. The vector divergence of tensor I is defined as

Div I = ∇ · I .

This is a tensor of rank (1+2-2), i.e., rank 1, with components

{Div I}i =
∂

∂xj
Iji .

Development yields

∂

∂xj

{
mr2δji −mxjxi

}
= 2mr

∂r

∂xj
δji −m

∂xj
∂xj

xi −mxj
∂xi
∂xj

= 2mxjδji − 3mxi −mxjδij = −2mxi .

So Div I = −2mr.

c. Tensor ε3 has rank 3, whilst tensor I has rank 2. Tensor T results from double con-
traction of ε3 and I, so the rank of T is (3+2-4). Hence, T is a tensor of rank 1 with
components

Ti = εijk Ijk .

Now use that ε3 is fully antisymmetric, whilst I is symmetric. Thus,

Ti =
1

2
εijk Ijk +

1

2
εikj Ikj =

1

2
εijk Ijk −

1

2
εijk Ijk = 0

(in the first step: indices j and k are reversed; in the second step the antisymmetry of ε3
and the symmetry of I is used).

So T is the null vector.
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Equation sheet Advanced Mechanics
for mid-term exam (version 2019)

A1. Goniometric relations:
cos(2α) = cos2 α− sin2 α, cos(α± β) = cosα cos β ∓ sinα sin β
sin(2α) = 2 sinα cosα, sin(α± β) = sinα cos β ± cosα sin β

A2. Spherical coordinates r, θ, φ:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ
dxdydz = r2 sin θ dr dθ dφ

v = er ṙ + eθ rθ̇ + eφ rφ̇ sin θ

a = er(r̈ − rφ̇2 sin2 θ − rθ̇2) + eθ(rθ̈ + 2ṙθ̇ − rφ̇2 sin θ cos θ)

+ eφ(rφ̈ sin θ + 2ṙφ̇ sin θ + 2rθ̇φ̇ cos θ)

A3. Cylindrical coordinates R, φ, z:

x = R cosφ, y = R sinφ, z = z
dxdydz = RdRdφ dz

v = eR Ṙ + eφRφ̇+ ez ż

a = eR(R̈−Rφ̇2) + eφ (2Ṙφ̇+Rφ̈) + ez z̈

A4. A× (B×C) = B(A ·C)−C(A ·B)

A5. (A×B) ·C = (B×C) ·A = (C×A) ·B

A6.
(
dQ
dt

)
fixed

=
(
dQ
dt

)
rot

+ ω ×Q

B1. Noninertial reference frames:

v = v′ + ω × r′ + V0

a = a′ + ω̇ × r′ + 2ω × v′ + ω × (ω × r′) + A0

C1. Systems of particles:

∑
iFi = dp

dt
, dL

dt
= N

C2. Angular momentum vector: L = rcm ×mvcm +
∑

i r̄i ×miv̄i
where r̄i = ri − rcm, v̄i = vi − vcm

C3. Equations of motion for 2-particle system with central force:

µ
d2R

dt2
= f(R)

R

R

with µ = m1m2/(m1 +m2) the reduced mass, R relative position vector.
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C4. Motion with variable mass:

Fext = mv̇ −Vṁ

with V velocity of ∆m relative to m.

D1. Moment of inertia tensor:

I =
∑
i

mi(ri · ri)1−
∑
i

miri ri

D2. Moment of inertia about an arbitrary axis: I = ñ I n = mk2

D3. Formulation for sliding friction: FP = µk FN

D4. Impulse and rotational impulse: P =
∫
Fdt = m∆vcm ,

∫
Ndt = P l

with l the distance between line of action and the fixed rotation axis.

E1. Transformation rule components of a real cartesian tensor, rank p, dimension N :

T ′i1i2...ip = αi1j1αi2j2 . . . αipjpTj1j2...jp

F1. Euler equations: N1 = I1 ω̇1 + ω2ω3 (I3 − I2)
(other equations follow by cyclic permutation of indices)
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