Classical field theory (NS-364B) 23 juni 2009

Opgave 1

Consider an interaction scalar field $\phi(x)$ on the 3+1-dimensional Minkowski space-time described by the following action

$$
S=\int d^{4} x\left(\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\lambda \phi^{4}\right)
$$

where λ is a constant (called the 'coupling constant').
a) Show that the action is invariant under infinitezimal transformations

$$
\phi \rightarrow \phi+\delta \phi, \quad \delta \phi=\varepsilon\left(x^{\mu} \partial_{\mu} \phi+\phi\right),
$$

up to a total derivative term $\delta S=\varepsilon \int d^{4} x \partial_{\mu} F^{\mu}$, where ε is a constant small (infinitezimal) parameter. Find the vector F^{μ} explicitly.
b) Construct the corresponding Noether current J^{μ} by using the general expression from the lecture notes. You can check, however, that this current is nog conserved, i.e. $\partial_{\mu} J^{\mu} \neq 0$. The reason for this non-conservation is that the action S is not exactly invariant unter infinitezimal transformations of ϕ, but it is invariant up to a total derivative term.
c) Show that an improved current

$$
J_{i m p r o v e d}^{\mu}=J^{\mu}-F^{\mu}
$$

is conserved due to equations of motion.

Opgave 2

A scalar $\phi(x)$ and a vector $A^{i}(x)$ are the quantities which under general transformations of coordinates $x^{i} \rightarrow x^{\prime i}\left(x^{j}\right)$ transform as follows

$$
\phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)=\phi(x), \quad A^{i}(x) \rightarrow A^{\prime i}\left(x^{\prime}\right)=\frac{\partial x^{\prime i}}{\partial x^{j}} A^{j}(x)
$$

A pseudoscalar and pseudovector are the quantities which transform in a diffent way

$$
\begin{aligned}
\phi(x) & \rightarrow \phi^{\prime}\left(x^{\prime}\right)=\operatorname{det}\left(\frac{\partial x^{\prime i}}{\partial x^{j}}\right) \phi(x) \\
A^{i}(x) & \rightarrow \quad A^{\prime i}\left(x^{\prime}\right)=\operatorname{det}\left(\frac{\partial x^{\prime i}}{\partial x^{j}}\right) \frac{\partial x^{\prime i}}{\partial x^{j}} A^{j}(x) .
\end{aligned}
$$

In particular, under space reflection $\vec{x} \rightarrow \overrightarrow{(x)}$ a scalar and a vector transform as

$$
\phi(x) \rightarrow \phi^{\prime}(t,-\vec{x})=\phi(t, \vec{x}), \quad A^{i}(x) \rightarrow A^{\prime i}(t,-\vec{x})=-A^{\prime i}(t, \vec{x}),
$$

while a pseudovector and a pseudoscalar transform as

$$
\phi(x) \rightarrow \phi^{\prime}(t,-\vec{x})=-\phi(t, \vec{x}), \quad A^{i}(x) \rightarrow A^{\prime i}(t,-\vec{x})=A^{\prime i}(t, \vec{x}) .
$$

As an example, in three dimensions, if \vec{A} and \vec{B} are vectors, then $\vec{A} \times \vec{B}$ is a pseudovector and $(\vec{A} \cdot \vec{B})$ is a scalar. Also, if \vec{C} is a pseudovector, then $\vec{A} \times \vec{C}$ is a vector and $(\vec{A} \cdot \vec{C})$ is a pseudoscalar.
a) Let \vec{A} be a vector and \vec{B} be a pseudovector. Derive wether the following quantities are vectors, pseudovectors, scalars or pseudoscalars
$\operatorname{rot} \vec{A}, \operatorname{rot} \vec{B}, \operatorname{div} \vec{A}, \operatorname{div} \vec{B}$
b) Using the second pair of Maxwell's equations and the definitions of the charge density ρ and the current density \vec{j}, determine whether ρ, \vec{j}, \vec{E} and \vec{H} are scalars, pseudoscalars, vectors or pseudovectors.

Opgave 3

Consider the action for electromagnetic field A_{μ} :

$$
S=-\frac{1}{4} \int d^{4} x F_{\mu \nu} F^{\mu \nu}
$$

Which symmetries of this action you know? Use this action to obtain the equations of motion for A_{μ}.

Opgave 4

Consider the following vector and scalar potentials

$$
\vec{A}(x, t)=\overrightarrow{A_{0}} e^{i(\vec{k} \cdot \vec{x}-\omega t)}, \quad \varphi(x, t)=0
$$

where $\overrightarrow{A_{0}}$ and \vec{k} are constant three-dimensional vectors, and ω is a constant frequency.
a) Derive the electric and magnetic fields corresponding to these potentials
b) Determine the conditions imposed on $\overrightarrow{A_{0}}, \vec{k}$ and ω by Maxwell's equations assuming that the absence of charge and current densities, i.e. $\rho=0$ and $\vec{j}=0$.

Opgave 5 (Bonus problem!)

Consider a charge density $\rho(x, t)$ and a current density $\vec{j}(x, t)$ in vacuum. Show that in the Coulomb gauge $\operatorname{div} \vec{A}=0$, the vector potential is determined by the transverse part of the current \vec{j}^{\perp} only. Hint 1 The current is decomposed on the transversal \vec{j}^{\perp} and the longitudinal $\vec{j} \|$ parts

$$
\vec{j}=\vec{j}^{\perp}+\vec{j} \|
$$

where $\operatorname{div} \vec{j}^{\perp}=0$ and the longitudinal part fulfills $\operatorname{rot} \vec{j} \|=0$.
Hint 2 Use the continuity equation to express the scalar potential.

