## Classical field theory 2016 (NS-364B) - Final exam

Tue April 19 2016, 13:30-16:30 Gamma. In total 8 points $=80 \%$
You have three hours to solve this exam. The exam is closed books.

Problem 1. Theoretical questions. (2 points)
Answer the questions below by a few sentences, a sketch, a formula or the like.
(A) (0.5 points) Consider Maxwell theory. What is a gauge transformation and how does it affect the equation of motion for the electric and magnetic field?
(B) (0.5 points) How many free parameters does the Lorentz group possess in $3+1$ dimensional Minkowski space? What is the physical meaning of these parameters?
(C) (0.5 points) Write down the continuity equation for the electric charge density. Show that it implies the conservation of the total charge Q in a volume V provided there is no electric current through the boundary of V .
(D) ( 0.5 points) The mass diffusion equation is given by $\partial \rho / \partial t=D \nabla^{2} \rho$, with $\rho$ the mass density, and $D$ the diffusion constant. Briefly describe the steps to arrive at this equation, and discuss range of its validity.

Problem 2. The Euler-Lagrange and Hamilton's equations, Noether's theorem. (3 points) Consider a system of $N$ coupled real scalar fields whose action is,

$$
\begin{equation*}
S=\int d^{4} x\left[\frac{1}{2} G_{a b}(\vec{\phi}) \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b} \eta^{\mu \nu}\right] \tag{1}
\end{equation*}
$$

where $a, b=1, \ldots, N, \vec{\phi}=\left(\phi_{1}, \ldots, \phi_{N}\right)^{T} . G_{a b}$ is known as a configurational metric (metric in the space of fields), and its inverse $G^{a b}$ is given by $G^{a b} G_{b c}=\delta_{c}^{a} . \eta^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$ is the inverse Minkowski metric.
(A) (0.5 points) Show that the Euler-Lagrange equations of motion are,

$$
\begin{equation*}
\partial_{t}\left[G_{a b}(\vec{\phi}) \partial_{t} \phi^{b}\right]-\partial_{i}\left[G_{a b}(\vec{\phi}) \partial_{i} \phi^{b}\right]=0 \tag{2}
\end{equation*}
$$

(B) (1 point) Show that the Hamiltonian density is given by,

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2} G^{a b}(\vec{\phi}) \pi_{a} \pi_{b}+\frac{1}{2} G_{a b} \partial_{i} \phi^{a} \partial_{i} \phi^{b} \tag{3}
\end{equation*}
$$

and find Hamilton's equations of motion.
(C) (1.5 points) Assume that $G_{a b}=\delta_{a b} f\left(\vec{\phi}^{2}\right)$, where $f$ is some function of $\vec{\phi}^{2}=\phi_{1}^{2}+\ldots+\phi_{N \rightarrow}^{2}$. In this case the Lagrangian density is invariant under rotations in the field space, $\vec{\phi} \rightarrow \mathcal{R} \vec{\phi}$, where $\mathcal{R}$ are orthogonal matrices satisfying $\mathcal{R}^{T} \cdot \mathcal{R}=\mathbb{1}=\mathcal{R} \cdot \mathcal{R}^{T}$.
Consider the case when $N=2$. In this case the rotational matrix is given by,

$$
\mathcal{R}=\left(\begin{array}{cc}
\cos \theta & \sin \theta  \tag{4}\\
-\sin \theta & \cos \theta
\end{array}\right)
$$

where $\theta \in[0,2 \pi)$ is a rotational angle.
(i) Show that an infinitesimal version of that transformation is $\delta \phi^{a}=\theta \epsilon^{a}{ }_{b} \phi^{b}$, where $\epsilon_{b}^{a}$ is an antisymmetric matrix whose entries are 1 and -1 ,

$$
\epsilon_{b}^{a}=\left(\begin{array}{cc}
0 & 1  \tag{5}\\
-1 & 0
\end{array}\right) .
$$

(ii) Show that the corresponding Noether current is,

$$
\begin{equation*}
J^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi^{a}\right)} \delta \phi^{a}=f\left(\vec{\phi}^{2}\right)\left[\left(\partial^{\mu} \phi^{(1)}\right) \phi^{(2)}-\left(\partial^{\mu} \phi^{(2)}\right) \phi^{(1)}\right] \tag{6}
\end{equation*}
$$

(iii) Show that this current is indeed conserved,

$$
\begin{equation*}
\partial_{\mu} J^{\mu}=0 \tag{7}
\end{equation*}
$$

Problem 3. Proca Lagrangian (3 points)
Consider the Proca Lagrangian which describes a massive vector field

$$
\begin{equation*}
\mathcal{L}_{\text {Proca }}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{m^{2}}{2} A_{\mu} A^{\mu} \tag{8}
\end{equation*}
$$

where $A_{\mu}$ is the vector potential, $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is the field strength tensor, and parameter $m$ is the Compton wave number which is related to the mass of the field as $m=m_{\gamma} c / \hbar$.
(A) (1 point) Use the Euler-Lagrange equation to show that the Proca equations of motion are given by

$$
\begin{equation*}
\partial_{\beta} F^{\beta \alpha}-m^{2} A^{\alpha}=0 . \tag{9}
\end{equation*}
$$

(B) (1 point) Calculate the stress energy-momentum tensor

$$
\begin{equation*}
T^{\mu \nu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\lambda}\right)} \partial^{\nu} A_{\lambda}-\eta^{\mu \nu} \mathcal{L} \tag{10}
\end{equation*}
$$

and write it in the following form

$$
\begin{equation*}
T^{\mu \nu}=\Theta^{\mu \nu}+\partial_{\lambda} S^{\lambda \mu \nu} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Theta^{\mu \nu}=-\left[F^{\mu \lambda} F_{\lambda}^{\nu}-\frac{1}{4} \eta^{\mu \nu} F_{\lambda \rho} F^{\lambda \rho}+m^{2}\left(A^{\mu} A^{\nu}-\frac{1}{2} \eta^{\mu \nu} A_{\lambda} A^{\lambda}\right)\right] \tag{12}
\end{equation*}
$$

is the symmetric stress energy momentum tensor, and

$$
\begin{equation*}
S^{\lambda \mu \nu}=F^{\lambda \mu} A^{\nu} \tag{13}
\end{equation*}
$$

is antisymmetric in the first two indices.
(C) (1 point) Show that the differential conservation law, in the Lorentz gauge $\partial_{\mu} A^{\mu}=0$, takes the following form

$$
\begin{equation*}
\partial_{\mu} \Theta^{\mu \nu}=0 \tag{14}
\end{equation*}
$$

In doing so, you will need to make use of Bianchi identity $\partial^{\rho} F^{\nu \lambda}+\partial^{\nu} F^{\lambda \rho}+\partial^{\lambda} F^{\rho \nu}=0$ and the Proca equation of motion.

Problem 1
(A) gouge transformation of electroviaguete potential

$$
A^{\mu} \rightarrow A^{\mu}=A^{\mu}+\partial^{\mu} \Lambda
$$

A scalar pied
leaves $F^{\mu \nu}$ and thins $\vec{E}, \vec{B}$ unchanged $\Rightarrow$ equations of motion abs unchanged
(B) 6 free parauretes

3 boosts (is 3 independent directions) 3 rotation (around 3 independent axes)
(C) coultimity equation

$$
\frac{\partial}{\partial t} p+\vec{\nabla} \cdot \vec{j}=0
$$

0.25
total charge in volume $V$

$$
Q=\int_{V} d^{3} x p
$$

conservation of $Q$
(D)

Conservation it mass: $\frac{\partial \rho}{\partial t}=-\nabla \cdot j \quad 0.2$
Fiol's law $\quad j=-D \nabla_{\rho} \quad 0.2$

Validity: lonjarure leryth / Smale frequonvis 0.1

Problem 2 filution

$$
\begin{aligned}
S & =\int d^{4} \times[\underbrace{\frac{1}{2} G_{a b}(\vec{\phi}) \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b} \eta^{\mu v}}_{\overrightarrow{2}}] \\
a, b & =1_{1} \ldots, N ; \quad \vec{\phi}=\left(\phi_{1}, \ldots, \phi_{N}\right)^{T} ; G^{a b} G_{b c}=\delta_{c}^{a} \\
\eta^{\mu \nu} & =\operatorname{diag}(1,-1,-1,-1)
\end{aligned}
$$

(A)

EOM:

$$
\begin{aligned}
& \frac{\delta S}{\delta \phi^{a}}=0=-\partial_{\mu}\left[G_{a b} \partial_{v} \phi^{b} \eta^{\mu}\right]+\frac{a}{2} \frac{\partial G_{a b}}{\partial \phi^{a}} \partial_{\mu} \phi^{a} \partial_{v} \phi^{b} y^{\mu} \\
& \underbrace{\partial_{\mu}\left[G_{a b} \partial_{v} \phi^{b} \eta^{\mu}\right]=\frac{1}{2} \sum^{\frac{\partial G_{a b}}{\partial \phi^{a}} \partial_{\mu} \phi^{a} \partial_{v} \phi^{b} \eta^{\mu}}}_{\partial_{t}\left[G_{a b} \partial_{t} \phi^{b}\right]-\partial_{i}\left[G_{a b} \partial_{i} \phi^{b}\right]} .
\end{aligned}
$$

(B)

$$
\begin{aligned}
& \begin{aligned}
& \pi_{a}= \frac{\delta S}{\delta \nu_{t} \phi^{a}}=G_{a b} \partial_{t} \phi^{b} \Rightarrow \partial_{t} \phi^{b} \\
&=G^{a b} \pi_{b}
\end{aligned} \\
& X=\bar{u}_{a} \partial_{t} \phi^{a}-\mathcal{L}=G^{a b} \bar{H}_{a} \bar{\Pi}_{b}-\frac{1}{2} G_{a b} \partial_{t} \phi^{a} \partial_{t} \phi^{b}+\frac{1}{2} G_{a b} \partial_{\tau} \phi^{a} \partial_{i} \phi^{b} \\
& X=\frac{1}{2} G^{a b} \pi_{a} \pi_{b}+\frac{1}{2} G_{a b} \partial_{i} \phi^{a} \partial_{i} \phi^{b} \\
& H=\int d^{4} x d t \\
& \begin{array}{l}
\dot{\pi}_{a}=-\frac{\delta H}{\delta \phi^{a}}=\partial_{i}\left[G_{a b} \partial_{i} \phi^{b}\right]-\frac{1}{2} \frac{\partial G^{b e}}{\partial \phi^{a}} \pi_{b} \pi_{2}-\frac{1}{2} \frac{\partial G_{b_{e}}^{a}}{\partial \phi^{a}} \partial_{i}^{b} \partial_{i} \phi^{c} \\
\dot{\phi}_{2}=\frac{\delta H}{\phi^{-i}}=G^{a b} \bar{u}_{1}
\end{array} \\
& \dot{\phi}_{a}=\frac{\delta H}{\delta \bar{u}_{a}}=G^{a b} \bar{u}_{b} \\
& \partial\left[G^{a b} G_{b c}\right]=0
\end{aligned}
$$

EOM: $\partial_{t}\left[G_{a b} \partial_{t} \phi^{b}\right]-\partial_{i}\left[G_{a b} \partial_{i} \phi^{b}\right]=\frac{1}{2} \frac{\partial G_{a b}}{\partial \phi^{a}} \partial_{\mu} \phi^{a} \partial_{u} \phi^{b}$
(c) $G_{a b}=\delta_{a b} f\left(\vec{\phi}^{2}\right) ; \vec{\phi}^{2}=\phi_{1}^{2}+\phi_{2}^{2} \quad(N=2)$
i)

$$
\begin{aligned}
& \vec{\phi} \rightarrow R \vec{\phi} \\
& \binom{\phi_{1}}{\phi_{2}} \rightarrow\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\phi_{1}}{\phi_{2}} \simeq\left(\begin{array}{cc}
1 & \theta \\
-\theta & 1
\end{array}\right)\binom{\phi_{1}}{\phi_{2}} \\
& \left.\begin{array}{l}
\delta \phi_{1}=\theta \phi_{2} \\
\delta \phi_{2}=-\theta \phi_{1}
\end{array}\right\} \quad \delta \phi^{a}=\theta \epsilon_{b}^{a} \phi^{b} \left\lvert\, \quad \epsilon_{b}^{a}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right.
\end{aligned}
$$

$\ddot{n})$

$$
\begin{array}{ll}
y^{\mu}=\frac{\partial \rho}{\partial\left(\partial \mu \phi^{a}\right)} \delta \phi^{a}=f\left(\vec{h}^{2}\right) \delta_{a b} \partial \partial^{\mu} \phi^{b} \delta \phi^{a} \\
y^{\mu}=f\left(\phi^{2}\right)\left[\partial^{\mu} \phi^{(n)} \delta \phi^{(n)}+\partial^{r} \phi^{(2)} \delta \phi^{(2)}\right] & \phi^{(n)} \leq \phi_{1} ; \phi^{(2)} \leq \phi_{2} \\
y^{\mu}=\theta f\left(\phi^{(2)}\right)\left[\partial^{\mu} \phi_{1} \phi_{2}-\partial^{\mu} \phi_{2} \phi_{1}\right] \mid & \theta=\operatorname{arbitrary}(=1)
\end{array}
$$

iii)

$$
\begin{aligned}
\partial_{\mu}^{\mu \mu}= & \partial_{\mu}\left\{f\left(\vec{\phi}^{\prime \prime}\right)\left[\partial^{\mu} \phi_{n} \phi_{2}-\partial^{\mu} \phi_{2} \phi_{1}\right]\right\} \\
= & \partial_{\mu}\left(f\left(\vec{\phi}^{\prime \prime}\right) \partial^{\mu} \phi_{1}\right) \phi_{2}-\partial_{\mu}\left(f\left(\phi^{-{ }^{2}}\right)\right. \\
& \left.+\partial^{\mu} \phi_{2}\right) \phi_{1} \\
& \underbrace{\left.\partial^{2}\right)}_{=0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { EOM }=\frac{1}{2} \frac{\partial f}{\partial \phi_{1} \phi_{2} \partial \mu \phi_{1} \partial \mu \phi_{2}-\frac{1}{2} \frac{\partial f}{\partial \phi_{2}} \phi_{\mu} \phi_{2} \partial \mu \phi_{1}} \begin{array}{l}
=\frac{1}{2}\left(\frac{\partial f}{\partial \phi_{n}} \phi_{2}-\frac{\partial f}{\partial \phi_{2}} \phi_{1}\right) \partial \mu \phi_{n} \partial \mu \phi_{2}=\frac{1}{2} \frac{\partial f}{\partial \phi} \frac{1}{\phi}\left(\phi_{n} \phi_{2}-\phi_{2} \phi_{1}\right)^{\mu} \\
\frac{\partial f}{\partial \phi_{n}}=\frac{\partial f}{\partial \phi} \frac{\partial \phi_{2}}{\partial \phi_{1}}=\frac{\partial f}{\partial \phi} \frac{\phi_{1}}{\phi} \quad \partial \mu y^{\mu}=\phi \\
\frac{\partial f}{\partial \phi_{2}}=\frac{\partial f}{\partial \phi} \frac{\partial \phi_{1}}{\partial \phi_{2}}=\frac{\partial f}{\partial \phi} \frac{\phi_{2}}{\phi}
\end{array}, \quad l
\end{aligned}
$$



