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Opgave 1. Maxwell theory in 1 + 1 space-time dimensions

Consider the action of Maxwell theory in two spacetime dimensions,

S[A] =
∫
dxdt( 1

2F
2
tx + θFtx + JµAµ) (1)

Here Ftx is the field strenght defined by Ftx = ∂tAx − ∂xAµ, where the two-vector Aµ = (At, Ax)
comprised the potentials, and Jµ = (J t, Jx) is some external current. Note that, in two space-time
dimensions, there exists no magnetic field whereas the electric field equals E = −Ftx. The term
proportional to the constant θ has no analogue in higher dimensions (at least, not in a Lorentz
invariant setting).

a) Prove that the electric field is invariant under the gauge transformations of the form δAµ =
∂µΛ(t, x). Derive the field equations for Aµ and write them as first-order equations for E. Show
that current Jµ must be conserved. In the absence of the current, give the solutions of E.

b) Use the gauge transformations to set At(t, x) = 0. Give the gauge parameter Λ(t, x) that is
required for this, expressed as an integral over At. Write down the resulting Lagrangian in the
At = 0 gauge, which depends only on Ax. Observe that we still have a residual invariance under
gauge tranformations with functions Λ(x) that depend only on x and no longer t.

c) Write down the field equations in this gauge and note there is one field equation less in this
case. For the moment ignore this equation which will have to be imposed eventually as the
so-called Gauss constraint. Write down the canonical momentum π(t, x) associated to Ax(t, x)
and show how it is related to E(t, x).

d) Write down the canonical commutation relations for Ax(x) and π(y) (in the Schrödinger picture,
so that we suppress the time dependence).

e) Write down the Hamiltonian and define the wave function in the ‘coordinate’ representation.
Here and henceforth suppress the external current Jµ. Give the form of the momentum in this
representation. What is the lowest-energy state?

f) Let us now return to the Gauss constraint. Show that, for arbitrary functions Λ(x), Q[Λ(x)] =∫
dxΛ(x)∂xπ(x) vanishes classically but not as an operator.

g) Bonus question: Consider Q[Λ] as an operator and calculate the commutator [Q,Ax(y)].
Interpret the result. Argue now that physical wave functions should be annihilated by the
operator Q. What are the physically relevant wavefunctions?

Opgave 2. Feynman diagrams for fermions

Consider a field theory for a massive complex fermion field ψ(t, ~x) in three space-time dimensions
(with c, the velocity of light, equal to c = 1), described by the Lagrangian,

L = iψ†∂tψ + ψ†σ3~σ · ~∇ψ −mψ†σ3ψ. (2)

Here σi are the Pauli matrices satisfying σiσj = δij1 + iεijkσk, and conventionally defined by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 1

)
.



Note that ψ is thus a spinor with two components. The arrow denotes vectors in the two spatial
dimensions, i.e.,

~x = (x1, x2), ~p = (p1, p2), ~∇ = (∂1, ∂2), ~σ = (σ1, σ2). (3)

a) Derive the field equations for ψ(t, ~x) and ψ†(t, ~x).

b) We now introduce a scalar commuting field φ which interacts with the fermions. The additional
Lagrangian equals

Ladd = − 1
2 (∂µφ)2 − 1

2µ
2φ2 + gφψ†σ3ψ. (4)

The presence of the matrix σ3 is required by three-dimensional Lorentx invariance. Write the
quadratic part of the fermionic and bosonic actions as,

i

~
S0[φ, ψ, ψ†] =

∫
d3xd3y

{
− 1

2φ(x)∆−1
φ (x, y)φ(y)− ψ†(x)σ3∆−1

ψ (x, y)ψ(y)
}
. (5)

We know that ∆−1
φ (x, y) = ∆−1

φ (x− y) = i
~ [−∂2

µ+µ2]δ3(x− y). Determine now also ∆−1
ψ (x, y),

which takes the form of a 2 × 2 matrix, in a similar form. Also write down the differential
equations satisfied by ∆φ(x) and ∆ψ(x).

c) Write down the path integral for both the free bosonic and free fermionic action, with external
source terms given by,∫

d3x{Jφ(x)φ(x) + ψ†(x)σ3Jψ(x) + J†ψ(x)σ3ψ(x)}, (6)

which should be added to (5). Note that the source Jψ is a two-dimensional spinor.

d) Calculate the path integral based on the free action with source terms, ignoring the determinants
generated by the (Gaussian) integration over the various fields. This result can be used to
calculate Feynman diagrams in the way that was explained in class.

e) Using the previous result derive the two-point functions in tree approximation,

〈φ(x)φ(y)〉 =
∫
DφDψDψ†φ(x)φ(y)e

i
~S[φ,ψ,ψ†]∫

DφDψDψ†e i
~S[φ,ψ,ψ†]

,

〈ψα(x)ψ†β(y)〉 =

∫
DφDψDψ†φα(x)ψ†β(y)e

i
~S[φ,ψ,ψ†]∫

DφDψDψ†e i
~S[φ,ψ,ψ†]

,

(7)

where α and β denote the spinor components.

f) Subsequently, derive the expression for the one-point function,

〈φ(x)〉 =
∫
DφDψDψ†φ(x)e

i
~S[φ,ψ,ψ†]∫

DφDψDψ†e i
~S[φ,ψ,ψ†]

, (8)

in the one-loop approximation (which is linear in the coupling constant g).

Opgave 3. The large-N limit

Consider the action for N real scalar fiels φi (i = 1 . . . N) and one real scalar field σ, given by

S[φi, σ] =
∫

d4x

{
− 1

2

∑
i

(∂µφi)2 − 1
2m

2
∑
i

φ2
i + σ

∑
i

φ2
i + 1

2cσ
2

}
. (9)

a) Give the expressions for the propagators and the veritces of the action.

b) Write down, in the one-loop approximation, the expressions for the two selfenergy diagrams for
the fields φi and the one selfenergy diagram for the field σ (do not evaluate the corresponding
momentum integrals).



c) Calculate the one-loop diagram with a single external σ-line. Express the result into the (di-
vergent) momentum integral

T (m2) =
∫

d4p

i(2π)4
1

p2 +m2
. (10)

How does the result depend on N?

d) We are interested in the (connected) correlation functions of the fields φi. To that order intro-
duce a source term Ji for every field φi (but no source for the field σ). The relevant connected
correclation functions are then given by

〈φi1(x1) . . . φin(xn)〉 =
δ

δJi1(x1)
. . .

δ

δJin(xn)
logW [Ji]

∣∣∣∣
Ji=0

, (11)

where W denotes the full path integral in the presence of the external sources. Determine the
value of c such that the theory is equivalent to the one given by an action without the field σ,
but with a four-point coupling

(∑
i φ

2
i

)2 with coupling constant −g/N .

Subsequently we assume that c is equal to this special value that you found in d). In the limit of
large N with g constant the φ4 coupling vanishes, so that theory is free. We analyze this below to
all orders in pertubation theory for all connected correlation functions (11).

e) First consider all diagrams with only external φ-lines (coupled via internal σ-lines) but without
loops formed exclusively by φ-propagators. In that case, show that only free φ-propagators
survive in the limit N →∞.

f) Add a loop consisting exclusively of internal φ-propagators. Hence only its external lines are
associated with σ, so that this loop must couple through σ-lines to the rest of the diagram.
Analyze which diagrams will contribute in the limit N → ∞. Generalize this argument to
several φ-loops and prove that, in the limit N → ∞, only the two-point correlation functions
(11) are nonzero. The theory therefore behaves as a free field theory in this limit. Nevertheless,
the two-point function does receive finite contributions in the large-N limit.

g) Bonus question: Prove, in the N → ∞ limit, that the quantum corrections only give rise to
changes in the φ-mass. Denote this modified mass by M . Show that M satisfies the following
equation,

M2 = m2 + 4gT (M2). (12)

Do this by first expanding the right-hand side to g with the aid of the one-loop result. Subse-
quently, that that both sides of the equation describe the same diagrams.


