Dit tentamen is in elektronische vorm beschikbaar gemaakt door de \mathcal{TBC} van A-Eskwadraat. A-Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten IN DIT TENTAMEN.

1

Midterm Cosmology (ns-tp430m)

Apr 15 2008 2-5pm Rm 206 Minnaert (20 points, 30%)

1. Schwarzschild - de Sitter metric. (5 points)

The Schwarzschild - de Sitter space-time metric is of the form,

$$ds^{2} = \left(1 - \frac{2G_{N}M}{c^{2}r} - \frac{\Lambda r^{2}}{3c^{2}}\right)c^{2}dt^{2} - \left(1 - \frac{2G_{N}M}{c^{2}r} - \frac{\Lambda r^{2}}{3}\right)^{-1}dr^{2} - r^{2}\left(d\theta^{2} + \sin^{2}(\theta)d\phi^{2}\right).$$
(1)

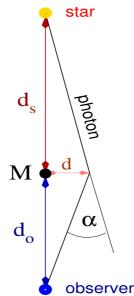


FIG. 1: The geometry of light deflection for Problem 1.a.

(a) Light deflection. (3 points)

Consider the geometry in which the source (a star) and the observer (on Earth) are symmetrically placed with respect to the lense of mass M as shown in figure. Calculate the light deflection angle α as a function of the impact parameter d (the closest distance of the photons to the lense of mass M at r = 0). Express your answer as a function of the distance of the observer to the center of mass d_o and of the distance of the source to the center of mass d_s . For simplicity assume a small deflection angle $\alpha \ll 1$, $d_s \gg d$ and $d_o \gg d$. What is the distance $d_o + d_s$ to the star at which the deflection angle vanishes?

The following integral you may find useful,

$$\int \frac{dy}{(x^2 + y^2)^{3/2}} = \frac{y}{x^2 \sqrt{x^2 + y^2}}.$$
(2)

(b) (2 points)

Consider the Universe with $\Omega_{\Lambda} = \Lambda/(3H_0^2) = 0.74$ and $\Omega_{\rm m} \equiv \rho_m/\rho_{\rm cr} = 0.26$, $\rho_{\rm cr} = 3c^2H_0^2/(8\pi G_N)$, where $H_0 = 0.71$ km/s/Mpc $(H_0^{-1} \simeq 14$ Gy) is the current Hubble parameter. What is the Hubble parameter and the Hubble radius in the limit when $t \to \infty$? (Based on the article: "The End of Cosmology," Scientific American, Mar 2008.)

2. Flatness problem. (3 points)

The measured value of the curvature density parameter $\Omega_k(t_0) = -c^2 k/(a^2 H^2)_0$ is today $-0.0175 < \Omega_k < 0.0085$ (95%CL: WMAP 2008). Calculate the dependence of $\Omega_k = \Omega_k(a)$ on the scale factor a in radiation era and in inflation driven by a scalar potential with the equation of state, $\mathcal{P}_{\phi} = w_{\phi}\rho_{\phi}$, where $|w_{\phi} + 1| \ll 1$ and $w_{\phi} = \text{constant}$. State the flatness problem! How is it resolved by an inflationary epoch?

3. Particle horizon. (2 points)

Calculate the physical $(\ell_{\rm ph})$ and comoving particle horizon $(\ell_{\rm c})$ in de Sitter inflation. Express your answers in terms of the Hubble radius, $R_H = c/H_I$, where H_I is the inflationary Hubble parameter. Based on your calculation can you conclude that two particles which are at a super-Hubble distance at a time t can come in causal contact at some later time t' > t? Justify your answer! *Hint:* Recall that the comoving particle horizon is defined by, $\ell_c(\eta) = c(\eta - \eta_{\rm in})$, where $\eta_{\rm in}$ and η denote the initial and current conformal time.

4. Confomal diagram. (5 points)

- (a) (3 points) Draw the conformal diagram (and write the corresponding line element in terms of conformal time η and proper radial distance χ) for a closed radiation dominated universe, with $\Omega_{\rm r} + \Omega_{\rm k} = 1$, where $\Omega_{\rm r} = \rho_{\rm r}/\rho_{\rm cr}$, $\Omega_{\rm k} = -c^2k/a^2 < 0$ and $\rho_{\rm cr} = (3c^2H_0^2)/(8\pi G_N)$, H_0 is the Hubble parameter today and $k = 1/R_{\rm curv}^2$ denotes the spatial curvature of space-times. Find the scale factor $a = a(\eta)$ as a function of (conformal) time.
- **(b)** (2 points)

Calculate both the physical and conformal time (after the Big Bang) at which the Universe recollapses (Big Crunch). Express your answer in terms of H_0 and Ω_r . *Hint:* The answer for the physical time at the Big Crunch is:

$$t_{\rm b.c.} = \frac{2\sqrt{\Omega_{\rm r}}}{H_0(\Omega_{\rm r} - 1)} \,. \tag{3}$$

5. Bouncing cosmology. (5 points)

Consider a universe with a negative spatial curvature $\kappa < 0$ whose expansion is governed by a homogeneous scalar field $\phi = \phi(t)$ with the energy density

$$\rho_{\phi} = -\frac{1}{2}\dot{\phi}^2\tag{4}$$

(note the 'wrong' sign of the kinetic term).

(a) (3 points)

Solve the corresponding scalar equation of motion and the Friedmann equations. Find the scale factor $a = a(\eta)$ and the Hubble parameter as a function of (conformal) time.

- (b) (1 point) Find the maximum expansion rate and the minimum scale factor.
- (c) (1 point) What is the principal advantage of a bouncing cosmology model like this one with respect to the standard Big Bang cosmology?

Bouncing cosmologies were considered by Tolman and others in the 1930s, and they have experienced a revival in the last decade.

The following integral you may find useful:

$$\int \frac{dx}{\sqrt{x^2 - b^2}} = \operatorname{Arccos}\left(\frac{x}{b}\right) \,. \tag{5}$$