Problem A)

(1) Prove that $(P \Rightarrow(Q \Rightarrow R)) \Leftrightarrow((R \Rightarrow Q) \Rightarrow P)$ and $P \wedge((\sim$ $Q) \vee R) \vee(Q \wedge(\sim R))$ are logically equivalent.
(2) Prove that the following is not true: For any statement holds that it is either a tautology or a contradiction.
Problem B) In this problem A, B, C, D are arbitrary sets.
(1) Prove that $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
(2) Show that the equality $(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$ does not neccesarily hold.

Problem C)

(1) Prove by induction that for every natural number $n>0$ holds $1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$.
Problem D) In each of the following a set A is given together with a relation R on it. In each case state (with proof) whether the relation is an equivalence relation or not. For each case in which R is an equivalence relation determine the equivalence classes.
(1) $A=\mathbb{Z}$ and for $x, y \in A$ holds $x R y$ exactly when 2 or 3 divide $x+y$.
(2) $A=\mathbb{R}$ and for $x, y \in A$ holds $x R y$ exactly when $x^{2}=y^{2}$.

Problem E) For each of the following statements decide if it is true or false. Give a short argument to support your answer.
(1) If R is an equivalence relation on a set A and for every $a \in A$ the equivalence class $[a]$ contains only finitely many elements, then the set A must be finite.
(2) If x, y, z are real numbers such that $x \cdot y \cdot z$ is irrational then at least one of the numbers x, y, z must be irrational.
(3) Prove that $(P \Rightarrow(Q \wedge S) \vee(R \Rightarrow Q)) \wedge(Q \wedge \sim Q) \wedge(((\sim R) \Rightarrow$ $(\sim Q)) \vee R \vee S)$ is a contradiction.
(4) The number $\sqrt{666}$ is irrational.

