Multidimensional Real Analysis

Tuesday June 26, 2013, $13.30-16.30 \mathrm{~h}$.

- Put your name and student number on every sheet that you hand in.
- Do not only give answers, but also prove all statements. When you use a Theorem, show that all conditions are met.
- You are not allowed to use a computer, book or lecture notes.

Good Luck!

1. Let T be the torus in \mathbb{R}^{3} given by the parametrization

$$
\Phi(\alpha, \theta)=((2+\cos \theta) \cos \alpha,(2+\cos \theta) \sin \alpha, \sin \theta), \quad-\pi<\alpha, \theta \leq \pi .
$$

(a) (10 points) Calculate $\operatorname{Vol}_{2}(T)$ and show that T is 2 -dimensional Jordan measurable.
Let C be the curve on the torus T which is the image for fixed $p \in \mathbb{R}$ of

$$
\gamma(t)=((2+\cos (p t)) \cos t,(2+\cos (p t)) \sin t, \sin (p t)), \quad t \in \mathbb{R} .
$$

(b) (5 points) Prove that C is a closed curve T if and only if $p \in \mathbb{Q}$ (Hint, investigate the periodicity of γ).
(c) (10 points) Give an integral (simplify as much as is possible) with which you can calculate the length of C (you do not have to solve this integral) and prove that C is 1-dimensional Jordan measurable if and only if $p \in \mathbb{Q}$.

2 . Let Ω be the solid ellipsoid in \mathbb{R}^{3} given by

$$
\Omega=\left\{x \in \mathbb{R}^{3} \left\lvert\, \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}<1\right.\right\} .
$$

(a) (10 points) Calculate $\mathrm{Vol}_{3}(\Omega)$.
(b) (5 points) Calculate the outer unit normal vector $\nu\left(x_{1}, x_{2}, x_{3}\right)$ at $x=\left(x_{1}, x_{2}, x_{3}\right) \in$ $\partial \Omega$.
(c) (10 points) In the midterm exam you had to determine the distance from the origin to the geometric tangent plane to $\partial \Omega$ at the point $x=\left(x_{1}, x_{2}, x_{3}\right) \in \partial \Omega$. The answer was:

$$
\mathrm{d}\left(0, T_{x} \partial \Omega\right)=\left(\frac{x_{1}^{2}}{a^{4}}+\frac{x_{2}^{2}}{b^{4}}+\frac{x_{3}^{2}}{c^{4}}\right)^{-\frac{1}{2}}
$$

Compute

$$
\int_{\partial \Omega} \mathrm{d}\left(0, T_{x} \partial \Omega\right) d_{2} x
$$

Hint: Use e.g. the divergency Theorem of Gauss. Choose a simple vector field such that the formulas nicely match.
3. (a) (10 points) let $f(x)=\left(x_{1}, x_{2},-2 x_{3}\right)$ be the vector field in \mathbb{R}^{3} and let S_{-}and S_{+} be the two hemispheres

$$
S_{ \pm}=\left\{x \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1, \pm x_{3} \geq 0\right\}
$$

$\nu_{ \pm}$is the unit normal vector on $S_{ \pm}$pointed upwarts. Compute both integrals:

$$
\int_{S_{ \pm}}\left\langle f, \nu_{ \pm}\right\rangle d_{2} x
$$

and show that they are equal.
We want to generalise this.
Let $H_{ \pm}$be two hypersurfaces in \mathbb{R}^{n} parametrized by $\Phi_{ \pm}\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)=\left(y_{1}, y_{2}, \ldots, y_{n-1}, \phi_{ \pm}\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)\right), \quad y_{1}^{2}+y_{2}^{2}+\cdots y_{n-1}^{2} \leq 1$. $\phi_{ \pm}$both C^{2}, asume that

$$
\phi_{-}\left(y_{1}, y_{2}, \ldots, y_{n-1}\right) \leq \phi_{+}\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)
$$

and

$$
H_{+} \cap H_{-}=\partial H_{+}=\partial H_{-} .
$$

$\nu_{ \pm}$is the unit normal vector on $H_{ \pm}$with n^{e}-component $\left(\nu_{ \pm}\right)_{n}>0$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a C^{2}-vector field with $\operatorname{div} f=0$.
(b) (10 points) Prove that

$$
\int_{H_{-}}\left\langle f, \nu_{-}\right\rangle(y) d_{n-1} y=\int_{H_{+}}\left\langle f, \nu_{+}\right\rangle(y) d_{n-1} y .
$$

(c) (10 points) Let $\partial H_{ \pm}$lie in a hyperplane through the origin, hence

$$
\partial H_{ \pm} \subset V_{a}=\left\{x \in \mathbb{R}^{n} \mid\langle x, a\rangle=0\right\} \quad \text { and let } H_{+} \cap V_{a}=H_{-} \cap V_{a}=\partial H_{+}=\partial H_{-} .
$$

Note that $a_{n} \neq 0$, since H_{-}and H_{+}are hypersurfaces. Asume moreover that

$$
\langle f(x), a\rangle=0 \quad \text { for all } x \in V_{a} .
$$

Prove that

$$
\int_{H_{-}}\left\langle f, \nu_{-}\right\rangle(y) d_{n-1} y=\int_{H_{+}}\left\langle f, \nu_{+}\right\rangle(y) d_{n-1} y=0 .
$$

