Multidimensional Real Analysis Tuesday June 26, 2013, 13.30 – 16.30 h.

- Put your name and student number on every sheet that you hand in.
- Do not only give answers, but also prove all statements. When you use a Theorem, show that all conditions are met.
- You are not allowed to use a computer, book or lecture notes.

Good Luck!

1. Let T be the torus in \mathbb{R}^3 given by the parametrization

$$\Phi(\alpha, \theta) = ((2 + \cos \theta) \cos \alpha, (2 + \cos \theta) \sin \alpha, \sin \theta), \qquad -\pi < \alpha, \theta \le \pi.$$

(a) (10 points) Calculate $Vol_2(T)$ and show that T is 2-dimensional Jordan measurable.

Let C be the curve on the torus T which is the image for fixed $p \in \mathbb{R}$ of

$$\gamma(t) = ((2 + \cos(pt))\cos t, (2 + \cos(pt))\sin t, \sin(pt)), \qquad t \in \mathbb{R}.$$

(b) (5 points) Prove that C is a closed curve T if and only if $p \in \mathbb{Q}$ (Hint, investigate the periodicity of γ).

(c) (10 points) Give an integral (simplify as much as is possible) with which you can calculate the length of C (you do not have to solve this integral) and prove that C is 1-dimensional Jordan measurable if and only if $p \in \mathbb{Q}$.

2. Let Ω be the solid ellipsoid in \mathbb{R}^3 given by

$$\Omega = \{ x \in \mathbb{R}^3 \, | \, \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} < 1 \}.$$

(a) (10 points) Calculate $\operatorname{Vol}_3(\Omega)$.

(b) (5 points) Calculate the outer unit normal vector $\nu(x_1, x_2, x_3)$ at $x = (x_1, x_2, x_3) \in \partial\Omega$.

(c) (10 points) In the midterm exam you had to determine the distance from the origin to the geometric tangent plane to $\partial\Omega$ at the point $x = (x_1, x_2, x_3) \in \partial\Omega$. The answer was:

$$d(0, T_x \partial \Omega) = \left(\frac{x_1^2}{a^4} + \frac{x_2^2}{b^4} + \frac{x_3^2}{c^4}\right)^{-\frac{1}{2}}$$

Compute

$$\int_{\partial\Omega} \mathrm{d}(0, T_x \partial\Omega) \, d_2 x.$$

Hint: Use e.g. the divergency Theorem of Gauss. Choose a simple vector field such that the formulas nicely match.

3. (a) (10 points) let $f(x) = (x_1, x_2, -2x_3)$ be the vector field in \mathbb{R}^3 and let S_- and S_+ be the two hemispheres

$$S_{\pm} = \{ x \in \mathbb{R}^3 \, | \, x_1^2 + x_2^2 + x_3^2 = 1, \, \pm x_3 \ge 0 \}.$$

 ν_{\pm} is the unit normal vector on S_{\pm} pointed upwarts. Compute both integrals:

$$\int_{S_{\pm}} \langle f, \nu_{\pm} \rangle d_2 x$$

and show that they are equal.

We want to generalise this.

Let H_{\pm} be two hypersurfaces in \mathbb{R}^n parametrized by

$$\Phi_{\pm}(y_1, y_2, \dots, y_{n-1}) = (y_1, y_2, \dots, y_{n-1}, \phi_{\pm}(y_1, y_2, \dots, y_{n-1})), \quad y_1^2 + y_2^2 + \dots + y_{n-1}^2 \le 1.$$

 ϕ_{\pm} both C^2 , asume that

$$\phi_{-}(y_1, y_2, \dots, y_{n-1}) \le \phi_{+}(y_1, y_2, \dots, y_{n-1})$$

and

$$H_+ \cap H_- = \partial H_+ = \partial H_-.$$

 ν_{\pm} is the unit normal vector on H_{\pm} with n^e-component $(\nu_{\pm})_n > 0$. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a C^2 -vector field with div f = 0.

(b) (10 points) Prove that

$$\int_{H_{-}} \langle f, \nu_{-} \rangle(y) d_{n-1}y = \int_{H_{+}} \langle f, \nu_{+} \rangle(y) d_{n-1}y.$$

(c) (10 points) Let ∂H_{\pm} lie in a hyperplane through the origin, hence

$$\partial H_{\pm} \subset V_a = \{ x \in \mathbb{R}^n \, | \, \langle x, a \rangle = 0 \} \quad \text{ and let } H_+ \cap V_a = H_- \cap V_a = \partial H_+ = \partial H_-.$$

Note that $a_n \neq 0$, since H_- and H_+ are hypersurfaces. Asume moreover that

$$\langle f(x), a \rangle = 0$$
 for all $x \in V_a$.

Prove that

$$\int_{H_{-}} \langle f, \nu_{-} \rangle(y) d_{n-1}y = \int_{H_{+}} \langle f, \nu_{+} \rangle(y) d_{n-1}y = 0.$$