Exam Analyse in Meer Variabelen

2018-06-26, 9:00-13:00

Solution 1

(a) Clearly, Φ is C^{∞} and injective. By a simple calculation we have

$$D\Phi(r,gf) = \left(\begin{array}{c} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{array}\right)$$

It now follows that $\det \Phi(r, \varphi) = r \neq 0$ for all all $(r, \varphi) \in U$. By the inverse function theorem it follows that Φ is a diffeomorphism from U onto an open subset V of \mathbb{R}^2 .

(b) We put $f^* = f \circ \Phi$. By the chain rule it follows that for $(r, \varphi) \in U$ we have

$$D(f^*)(r,\varphi) = (D_1 f(\Phi(r,\varphi)) \mid D_2 f(\Phi(r,\varphi))) D\Phi(r,\varphi)$$

hence

$$(D_1 f(\Phi(r,\varphi)) \mid D_2 f(\Phi(r,\varphi))) = \left(\frac{\partial}{\partial r} (f^*)(r,\varphi) \mid \frac{\partial}{\partial \varphi} (f^*)(r,\varphi)\right) D\Phi(r,\varphi)^{-1}.$$

Now

$$D\Phi(r,\varphi)^{-1} = \frac{1}{r} \begin{pmatrix} r\cos\varphi & r\sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}.$$

This implies

$$D_1 f(\Phi(r, \varphi)) = \left[\cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi}\right] (f^*)(r, \varphi),$$

$$D_2 f(\Phi(r, \varphi)) = \left[\sin \varphi \frac{\partial}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial}{\partial \varphi}\right] (f^*)(r, \varphi),$$

which may be rewritten as the required equalities.

(c) Noting that $D_j f: V \to \mathbb{R}$ is C^1 and applying (b) to $D_j f$, we obtain

$$\begin{split} ([D_1^2 f] \circ \Phi)(r, \varphi)) &= [D_1(D_1 f) \circ \Phi](r, \varphi) \\ &= \left[\cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi} \right] [D_1 f \circ \Phi](r, \varphi) \\ &= \left[\cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi} \right]^2 f^*(r, \varphi) \\ &= \left[\cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi} \right] \left[\cos \varphi \frac{\partial}{\partial r} \right] (f^*)(r, \varphi) \\ &= \left[\cos^2 \varphi \frac{\partial^2}{\partial r^2} + \frac{1}{r} \sin^2 \varphi \frac{\partial}{\partial r} \right] (f^*)(r, \varphi) \end{split}$$

Likewise,

$$([D_2^2 f] \circ \Phi)(r, \varphi) = \left[\sin^2 \varphi \frac{\partial^2}{\partial r^2} + \frac{1}{r} \cos^2 \varphi \frac{\partial}{\partial r}\right] (f^*)(r, \varphi)$$

Adding up these identities, we find the desired identity.

Solution 2

(a) By the characterization of submanifolds in the book, there exists an open neighborhood $U_f \ni x^0$ in \mathbb{R}^n and a submersion $\tilde{f}: U_f \to \mathbb{R}^{n-p} = \mathbb{R}^q$ such that $U_f \cap M = \tilde{f}^{-1}(0)$. Since $x^0 \in U_f \cap M \cap U_g \cap N$, we have $\tilde{f}(x^0) = 0$ and $\tilde{g}(x^0) = 0$.

Likewise, we find a submersion $\tilde{g}: U_g \to \mathbb{R}^p$ such that $U_g \cap N = \tilde{g}^{-1}(0)$. Put $U = U_f \cap U_g$, $f = \tilde{f}|_U$ and $g = \tilde{g}|_U$. Then f and g are submersions on U. Furthermore,

$$f^{-1}(0) = U \cap \tilde{f}^{-1}(0) = U \cap U_f \cap M = U \cap M.$$

Likewise $g^{-1}(0) = U \cap N$.

(b) For $x \in U$ we have

$$DF(x) = \left(\begin{array}{c} Dg(x) \\ Df(x) \end{array} \right).$$

From this it is clear that $D(f,g)(x) : \mathbb{R}^n \to \mathbb{R}^{p \times q}$ is a surjective linear map. By the rank theorem from linear algebra it follows that $D(f,g)(x) \in \operatorname{Aut}(\mathbb{R}^n)$.

- (c) By the inverse function theorem there exists an open neighborhood $U_0 \ni x^0$ in \mathbb{R}^n such that F maps U_0 diffeomorphically onto an open subset V containing $F(x^0) = 0$. The inverse Φ is a diffeomorphism from V onto U_0 . Furthermore, let $x \in U_0$. Then $x \in \Phi(V \cap (\mathbb{R}^p \times \{0\}))$ if and only if $F(x) \in V \cap (\mathbb{R}^p \times \{0\})$, which in turn is equivalent to $F(x) \in V$ and f(x) = 0 hence to $x \in \Phi(V)$ and $x \in U \cap M$, which is equivalent to $x \in \Phi(V) \cap M$. The second assertion follows in a similar fashion.
- (d) Let $\mathscr{O} = F(V)$, then for $x \in \mathscr{O}$ we have $x \in M \cap N \iff (f(x) = 0 \text{ and } g(x) = 0) \iff F(x) \in (\mathbb{R}^p \times \{0\}) \cap (\{0\} \times \mathbb{R}^q) = \{0\} \iff x \in \Phi(\{0\}) = \{x^0\}$. This establishes the assertion.
- (e) The intersection $M \cap N$ is compact. For every $a \in M \cap N$ there exists an open neighborhood $U_a \ni a$ in \mathbb{R}^n such that $U_a \cap M \cap N = \{a\}$. By compactness, there exist finitely many $a_1, \ldots, a_N \in M \cap N$ such that the sets U_{a_j} cover $M \cap N$. Since $U_{a_j} \cap M \cap N = \{a_j\}$, it follows that $M \cap N = \{a_1, \ldots, a_N\}$.

Solution 3

(a) From the assumption it follows that $0 \le f \le 1_{\partial B}$. Now *B* is Jordan measurable, hence ∂B is negligable, and we find

$$0 \leq \underline{\int}_{B} f(x) \, dx \leq \overline{\int}_{B} f(x) \, dx \leq \overline{\int}_{B} \mathbf{1}_{\partial B}(x) \, dx = 0.$$

This implies the assertion.

(b) We observe that $f = 1_B - 1_{B \setminus S}$. The first term is integrable with integral equal to vol(*B*); the second is also integrable with zero integral in view of (a). This implies the result.

- (c) Fix such a₁ < u < b₁ and put g(v) = f(u,v). Then the function g : I₂ → ℝ is bounded. Furthermore, if a₂ < v < b₂, then (u,v) ∈ inw(B) hence g(v) = f(u,v) = 1. We see that g equals 1 on (a₂,b₂). This implies that g is Riemann integrable over I₂, with integral equal to b₂ a₂. By definition of Riemann integrability, it follows that lower and upper integral of g over I₂ are equal to each other.
- (d) There exists a set T ⊂ [a₂,b₂] which is not Jordan-measurable. E.g., the set T := [a₂,b₂] ∩ Q has this property. We now take S = inw(B) ∪ {b₁} × T. Then f(b₂, ·) equals 1_T and is therefore not Riemann integrable. Hence, (c) does not hold for u = b₁.
- (e) We put $\overline{F}(u)$ for the inner upper integral, and $\underline{F}(u)$. As we argued in (c) we have $\overline{F}(u) = \underline{F}(u) = b_2 a_2$ for $a_1 < u < b_1$. This means that the functions \overline{F} and \underline{F} are both integrable over $[a_1, b_1]$, with integral $(b_1 a_1)(b_2 a_2) = \operatorname{vol}(B)$. This implies the two equalities.

Solution 4

- (a) The sets K_n^{\pm} are closed and bounded in \mathbb{R}^2 hence compact. The boundary of K_n^{\pm} is a finite union of compact subsets of C^1 -submanifolds of dimension 1, hence Jordan negligable. It follows that K_n^{\pm} are Jordan measurable.
- (b) We will show this for K_n^+ . The other case is treated in a similar fashion. Since K_n^+ is compact Jordan measurable, and f continuous on K_n^+ , it follows that f is Riemann-integrable over K_n^+ . Hence $1_{K_n^+}f$ is a Riemann integrable function with compact support.

We note that K_n^+ is a compact subset of the open set $\mathbb{R}^2 \setminus L$, where $L = (-\infty, 0] \times \{0\}$. Let $U = (0, \infty) \times (-\pi, \pi)$ and define $\Phi : U \to \mathbb{R}^2$ by $\Phi(r, \varphi) = r(\cos \varphi, \sin \varphi)$. Then Φ is bijective from U onto $\mathbb{R}^2 \setminus L$, and

$$D\Phi(r,\varphi) = \begin{pmatrix} \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end{pmatrix}.$$

Now det $D\Phi(r, \varphi) = r > 0$ for $(r, \varphi) \in U$ and we see that Φ is a C^1 -diffeomorphism from U onto $\mathbb{R}^2 \setminus L$. We note that $\Phi^{-1}(K_n^+) = [\frac{1}{n}, 1] \times [-\pi/2, \pi/2]$. By application of the substitution of variables theorem, we have

$$\begin{split} \int_{K_n^+} f(x) \, dx &= \int_{\mathbb{R}^2 \setminus L} \mathbf{1}_{K_n^+}(x) f(x) \, dx \\ &= \int_U (\mathbf{1}_{K_n^+} f)(\Phi(y)) |\det D\Phi(y)| \, dy \\ &= \int_{-\pi}^{\pi} \int_0^{\infty} \mathbf{1}_{K_n^+}(\Phi(r, \varphi)) f(\Phi(r, \varphi)) \, r \, dr d\varphi \\ &= \int_{-\pi/2}^{\pi/2} \int_{1/n}^1 \mathbf{1} \cdot \frac{1}{r} \cdot r \, dr d\varphi = \pi (1 - \frac{1}{n}). \end{split}$$

(c) We define $K_n = K_n^- \cup K_n^+$. Then K_n is a compact Jordan measurable set. Since K_n^- and K_n^+ overlap on part of their boundaries, hence a negligable set, it follows

that $1_{K_n} - 1_{K_n^+} - 1_{K_n^-}$ has Riemann integral zero, so that

$$\int_{\mathbb{R}^2 \setminus \{0\}} f(x) \, dx = \int_{K_n^+} f(x) \, dx = \int_{K_n^+} f(x) \, dx = \int_{K_n^-} f(x) \, dx = \int_{K_n^+} f(x$$

Taking the limit for $n \to \infty$, we see that $1_{\overline{D}}f$ is absolutely Riemann integrable over $\mathbb{R}^2 \setminus \{0\}$ with integral 2π . As ∂D is Jordan negligable and compact, the same holds for $1_D f$. This easily implies that f is absolutely Riemann integrable over $D \setminus \{0\}$ with integral

$$\int_{D\setminus\{0\}} \|x\|^{-1} \, dx = 2\pi.$$