
Exam Analyse in Meer Variabelen 2018-06-26, 9:00–13:00

Solution 1
(a) Clearly, Φ is C∞ and injective. By a simple calculation we have

DΦ(r,g f ) =
(

cosϕ −r sinϕ

sinϕ r cosϕ

)
It now follows that detΦ(r,ϕ) = r 6= 0 for all all (r,ϕ) ∈ U. By the inverse
function theorem it follows that Φ is a diffeomorphism from U onto an open
subset V of R2.

(b) We put f ∗ = f ◦Φ. By the chain rule it follows that for (r,ϕ) ∈U we have

D( f ∗)(r,ϕ) = (D1 f (Φ(r,ϕ)) | D2 f (Φ(r,ϕ))) DΦ(r,ϕ)

hence

(D1 f (Φ(r,ϕ)) | D2 f (Φ(r,ϕ))) =
(

∂

∂ r
( f ∗)(r,ϕ) | ∂

∂ϕ
( f ∗)(r,ϕ)

)
DΦ(r,ϕ)−1.

Now

DΦ(r,ϕ)−1 =
1
r

(
r cosϕ r sinϕ

−sinϕ cosϕ

)
.

This implies

D1 f (Φ(r,ϕ)) =

[
cosϕ

∂

∂ r
− 1

r
sinϕ

∂

∂ϕ

]
( f ∗)(r,ϕ),

D2 f (Φ(r,ϕ)) =

[
sinϕ

∂

∂ r
+

1
r

cosϕ
∂

∂ϕ

]
( f ∗)(r,ϕ),

which may be rewritten as the required equalities.

(c) Noting that D j f : V → R is C1 and applying (b) to D j f , we obtain

([D2
1 f ] ◦Φ)(r,ϕ)) = [D1(D1 f ) ◦Φ](r,ϕ)

=

[
cosϕ

∂

∂ r
− 1

r
sinϕ

∂

∂ϕ

]
[D1 f ◦Φ](r,ϕ)

=

[
cosϕ

∂

∂ r
− 1

r
sinϕ

∂

∂ϕ

]2

f ∗(r,ϕ)

=

[
cosϕ

∂

∂ r
− 1

r
sinϕ

∂

∂ϕ

][
cosϕ

∂

∂ r

]
( f ∗)(r,ϕ)

=

[
cos2

ϕ
∂ 2

∂ r2 +
1
r

sin2
ϕ

∂

∂ r

]
( f ∗)(r,ϕ)

Likewise,

([D2
2 f ] ◦Φ)(r,ϕ) =

[
sin2

ϕ
∂ 2

∂ r2 +
1
r

cos2
ϕ

∂

∂ r

]
( f ∗)(r,ϕ)

Adding up these identities, we find the desired identity.
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Solution 2
(a) By the characterization of submanifolds in the book, there exists an open neigh-

borhood U f 3 x0 in Rn and a submersion f̃ :U f →Rn−p =Rq such that U f ∩M =
f̃−1(0). Since x0 ∈U f ∩M∩Ug∩N, we have f̃ (x0) = 0 and g̃(x0) = 0.

Likewise, we find a submersion g̃ : Ug→Rp such that Ug∩N = g̃−1(0). Put U =
U f ∩Ug, f = f̃ |U and g= g̃|U . Then f and g are submersions on U. Furthermore,

f−1(0) =U ∩ f̃−1(0) =U ∩U f ∩M =U ∩M.

Likewise g−1(0) =U ∩N.

(b) For x ∈U we have

DF(x) =
(

Dg(x)
D f (x)

)
.

From this it is clear that D( f ,g)(x) : Rn→ Rp×q is a surjective linear map. By
the rank theorem from linear algebra it follows that D( f ,g)(x) ∈ Aut(Rn).

(c) By the inverse function theorem there exists an open neighborhood U0 3 x0 in
Rn such that F maps U0 diffeomorphically onto an open subset V containing
F(x0) = 0. The inverse Φ is a diffeomorphism from V onto U0. Furthermore, let
x∈U0. Then x∈Φ(V ∩(Rp×{0})) if and only if F(x)∈V ∩(Rp×{0}), which
in turn is equivalent to F(x)∈V and f (x) = 0 hence to x ∈Φ(V ) and x ∈U ∩M,
which is equivalent to x ∈ Φ(V )∩M. The second assertion follows in a similar
fashion.

(d) Let O = F(V ), then for x ∈ O we have x ∈M∩N ⇐⇒ ( f (x) = 0 and g(x) =
0) ⇐⇒ F(x) ∈ (Rp×{0})∩ ({0}×Rq) = {0} ⇐⇒ x ∈Φ({0}) = {x0}. This
establishes the assertion.

(e) The intersection M ∩N is compact. For every a ∈ M ∩N there exists an open
neighborhood Ua 3 a in Rn such that Ua∩M∩N = {a}. By compactness, there
exist finitely many a1, . . . ,aN ∈M∩N such that the sets Ua j cover M∩N. Since
Ua j ∩M∩N = {a j}, it follows that M∩N = {a1, . . . ,aN}.

Solution 3
(a) From the assumption it follows that 0≤ f ≤ 1∂B. Now B is Jordan measurable,

hence ∂B is negligable, and we find

0≤
∫

B
f (x) dx≤

∫
B

f (x) dx≤
∫

B
1∂B(x) dx = 0.

This implies the assertion.

(b) We observe that f = 1B− 1B\S. The first term is integrable with integral equal
to vol(B); the second is also integrable with zero integral in view of (a). This
implies the result.
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(c) Fix such a1 < u < b1 and put g(v) = f (u,v). Then the function g : I2 → R
is bounded. Furthermore, if a2 < v < b2, then (u,v) ∈ inw(B) hence g(v) =
f (u,v) = 1. We see that g equals 1 on (a2,b2). This implies that g is Riemann
integrable over I2, with integral equal to b2−a2. By definition of Riemann inte-
grability, it follows that lower and upper integral of g over I2 are equal to each
other.

(d) There exists a set T ⊂ [a2,b2] which is not Jordan-measurable. E.g., the set
T := [a2,b2]∩Q has this property. We now take S = inw(B)∪{b1}×T. Then
f (b2, ·) equals 1T and is therefore not Riemann integrable. Hence, (c) does not
hold for u = b1.

(e) We put F(u) for the inner upper integral, and F(u). As we argued in (c) we have
F(u) = F(u) = b2−a2 for a1 < u < b1. This means that the functions F and F
are both integrable over [a1,b1], with integral (b1−a1)(b2−a2) = vol(B). This
implies the two equalities.

Solution 4
(a) The sets K±n are closed and bounded in R2 hence compact. The boundary of K±n

is a finite union of compact subsets of C1-submanifolds of dimension 1, hence
Jordan negligable. It follows that K±n are Jordan measurable.

(b) We will show this for K+
n . The other case is treated in a similar fashion. Since

K+
n is compact Jordan measurable, and f continuous on K+

n , it follows that f
is Riemann-integrable over K+

n . Hence 1K+
n

f is a Riemann integrable function
with compact support.

We note that K+
n is a compact subset of the open set R2 \L, where L = (−∞,0]×

{0}. Let U =(0,∞)×(−π,π) and define Φ :U→R2 by Φ(r,ϕ)= r(cosϕ,sinϕ).
Then Φ is bijective from U onto R2 \L, and

DΦ(r,ϕ) =
(

cosϕ −r sinϕ

sinϕ r cosϕ

)
.

Now detDΦ(r,ϕ)= r > 0 for (r,ϕ)∈U and we see that Φ is a C1-diffeomorphism
from U onto R2 \L. We note that Φ−1(K+

n ) = [1
n ,1]× [−π/2,π/2]. By applica-

tion of the substitution of variables theorem, we have∫
K+

n

f (x) dx =
∫
R2\L

1K+
n
(x) f (x) dx

=
∫

U
(1K+

n
f )(Φ(y))|detDΦ(y)| dy

=
∫

π

−π

∫
∞

0
1K+

n
(Φ(r,ϕ)) f (Φ(r,ϕ))r drdϕ

=
∫

π/2

−π/2

∫ 1

1/n
1 · 1

r
· r drdϕ = π(1− 1

n
).

(c) We define Kn = K−n ∪K+
n . Then Kn is a compact Jordan measurable set. Since

K−n and K+
n overlap on part of their boundaries, hence a negligable set, it follows
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that 1Kn−1K+
n
−1K−n has Riemann integral zero, so that∫

R2\{0}
f (x) dx =

∫
K+

n

f +
∫

K−n
f = 2π(1− 1

n
).

Taking the limit for n→ ∞, we see that 1D f is absolutely Riemann integrable
over R2 \ {0} with integral 2π. As ∂D is Jordan negligable and compact, the
same holds for 1D f . This easily implies that f is absolutely Riemann integrable
over D\{0} with integral ∫

D\{0}
‖x‖−1 dx = 2π.
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