Exam Analyse in Meer Variabelen

Solution 1

(a) Clearly, Φ is C^{∞} and injective. By a simple calculation we have

$$
D \Phi(r, g f)=\left(\begin{array}{cc}
\cos \varphi & -r \sin \varphi \\
\sin \varphi & r \cos \varphi
\end{array}\right)
$$

It now follows that $\operatorname{det} \Phi(r, \varphi)=r \neq 0$ for all all $(r, \varphi) \in U$. By the inverse function theorem it follows that Φ is a diffeomorphism from U onto an open subset V of \mathbb{R}^{2}.
(b) We put $f^{*}=f \circ \Phi$. By the chain rule it follows that for $(r, \varphi) \in U$ we have

$$
D\left(f^{*}\right)(r, \varphi)=\left(D_{1} f(\Phi(r, \varphi)) \mid D_{2} f(\Phi(r, \varphi))\right) D \Phi(r, \varphi)
$$

hence

$$
\left(D_{1} f(\Phi(r, \varphi)) \mid D_{2} f(\Phi(r, \varphi))\right)=\left(\frac{\partial}{\partial r}\left(f^{*}\right)(r, \varphi) \left\lvert\, \frac{\partial}{\partial \varphi}\left(f^{*}\right)(r, \varphi)\right.\right) D \Phi(r, \varphi)^{-1}
$$

Now

$$
D \Phi(r, \varphi)^{-1}=\frac{1}{r}\left(\begin{array}{cc}
r \cos \varphi & r \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right) .
$$

This implies

$$
\begin{aligned}
D_{1} f(\Phi(r, \varphi)) & =\left[\cos \varphi \frac{\partial}{\partial r}-\frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi}\right]\left(f^{*}\right)(r, \varphi) \\
D_{2} f(\Phi(r, \varphi)) & =\left[\sin \varphi \frac{\partial}{\partial r}+\frac{1}{r} \cos \varphi \frac{\partial}{\partial \varphi}\right]\left(f^{*}\right)(r, \varphi)
\end{aligned}
$$

which may be rewritten as the required equalities.
(c) Noting that $D_{j} f: V \rightarrow \mathbb{R}$ is C^{1} and applying (b) to $D_{j} f$, we obtain

$$
\begin{aligned}
\left.\left(\left[D_{1}^{2} f\right] \circ \Phi\right)(r, \varphi)\right) & =\left[D_{1}\left(D_{1} f\right) \circ \Phi\right](r, \varphi) \\
& =\left[\cos \varphi \frac{\partial}{\partial r}-\frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi}\right]\left[D_{1} f \circ \Phi\right](r, \varphi) \\
& =\left[\cos \varphi \frac{\partial}{\partial r}-\frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi}\right]^{2} f^{*}(r, \varphi) \\
& =\left[\cos \varphi \frac{\partial}{\partial r}-\frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi}\right]\left[\cos \varphi \frac{\partial}{\partial r}\right]\left(f^{*}\right)(r, \varphi) \\
& =\left[\cos ^{2} \varphi \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \sin ^{2} \varphi \frac{\partial}{\partial r}\right]\left(f^{*}\right)(r, \varphi)
\end{aligned}
$$

Likewise,

$$
\left(\left[D_{2}^{2} f\right] \circ \Phi\right)(r, \varphi)=\left[\sin ^{2} \varphi \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \cos ^{2} \varphi \frac{\partial}{\partial r}\right]\left(f^{*}\right)(r, \varphi)
$$

Adding up these identities, we find the desired identity.

Solution 2

(a) By the characterization of submanifolds in the book, there exists an open neighborhood $U_{f} \ni x^{0}$ in \mathbb{R}^{n} and a submersion $\tilde{f}: U_{f} \rightarrow \mathbb{R}^{n-p}=\mathbb{R}^{q}$ such that $U_{f} \cap M=$ $\tilde{f}^{-1}(0)$. Since $x^{0} \in U_{f} \cap M \cap U_{g} \cap N$, we have $\tilde{f}\left(x^{0}\right)=0$ and $\tilde{g}\left(x^{0}\right)=0$.
Likewise, we find a submersion $\tilde{g}: U_{g} \rightarrow \mathbb{R}^{p}$ such that $U_{g} \cap N=\tilde{g}^{-1}(0)$. Put $U=$ $U_{f} \cap U_{g}, f=\left.\tilde{f}\right|_{U}$ and $g=\left.\tilde{g}\right|_{U}$. Then f and g are submersions on U. Furthermore,

$$
f^{-1}(0)=U \cap \tilde{f}^{-1}(0)=U \cap U_{f} \cap M=U \cap M .
$$

Likewise $g^{-1}(0)=U \cap N$.
(b) For $x \in U$ we have

$$
D F(x)=\binom{D g(x)}{D f(x)} .
$$

From this it is clear that $D(f, g)(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p \times q}$ is a surjective linear map. By the rank theorem from linear algebra it follows that $D(f, g)(x) \in \operatorname{Aut}\left(\mathbb{R}^{n}\right)$.
(c) By the inverse function theorem there exists an open neighborhood $U_{0} \ni x^{0}$ in \mathbb{R}^{n} such that F maps U_{0} diffeomorphically onto an open subset V containing $F\left(x^{0}\right)=0$. The inverse Φ is a diffeomorphism from V onto U_{0}. Furthermore, let $x \in U_{0}$. Then $x \in \Phi\left(V \cap\left(\mathbb{R}^{p} \times\{0\}\right)\right)$ if and only if $F(x) \in V \cap\left(\mathbb{R}^{p} \times\{0\}\right)$, which in turn is equivalent to $F(x) \in V$ and $f(x)=0$ hence to $x \in \Phi(V)$ and $x \in U \cap M$, which is equivalent to $x \in \Phi(V) \cap M$. The second assertion follows in a similar fashion.
(d) Let $\mathscr{O}=F(V)$, then for $x \in \mathscr{O}$ we have $x \in M \cap N \Longleftrightarrow(f(x)=0$ and $g(x)=$ $0) \Longleftrightarrow F(x) \in\left(\mathbb{R}^{p} \times\{0\}\right) \cap\left(\{0\} \times \mathbb{R}^{q}\right)=\{0\} \Longleftrightarrow x \in \Phi(\{0\})=\left\{x^{0}\right\}$. This establishes the assertion.
(e) The intersection $M \cap N$ is compact. For every $a \in M \cap N$ there exists an open neighborhood $U_{a} \ni a$ in \mathbb{R}^{n} such that $U_{a} \cap M \cap N=\{a\}$. By compactness, there exist finitely many $a_{1}, \ldots, a_{N} \in M \cap N$ such that the sets $U_{a_{j}}$ cover $M \cap N$. Since $U_{a_{j}} \cap M \cap N=\left\{a_{j}\right\}$, it follows that $M \cap N=\left\{a_{1}, \ldots, a_{N}\right\}$.

Solution 3

(a) From the assumption it follows that $0 \leq f \leq 1_{\partial B}$. Now B is Jordan measurable, hence ∂B is negligable, and we find

$$
0 \leq \int_{B} f(x) d x \leq \bar{\int}_{B} f(x) d x \leq \bar{\int}_{B} 1_{\partial B}(x) d x=0 .
$$

This implies the assertion.
(b) We observe that $f=1_{B}-1_{B \backslash S}$. The first term is integrable with integral equal to $\operatorname{vol}(B)$; the second is also integrable with zero integral in view of (a). This implies the result.
(c) Fix such $a_{1}<u<b_{1}$ and put $g(v)=f(u, v)$. Then the function $g: I_{2} \rightarrow \mathbb{R}$ is bounded. Furthermore, if $a_{2}<v<b_{2}$, then $(u, v) \in \operatorname{inw}(B)$ hence $g(v)=$ $f(u, v)=1$. We see that g equals 1 on $\left(a_{2}, b_{2}\right)$. This implies that g is Riemann integrable over I_{2}, with integral equal to $b_{2}-a_{2}$. By definition of Riemann integrability, it follows that lower and upper integral of g over I_{2} are equal to each other.
(d) There exists a set $T \subset\left[a_{2}, b_{2}\right]$ which is not Jordan-measurable. E.g., the set $T:=\left[a_{2}, b_{2}\right] \cap \mathbb{Q}$ has this property. We now take $S=\operatorname{inw}(B) \cup\left\{b_{1}\right\} \times T$. Then $f\left(b_{2}, \cdot\right)$ equals 1_{T} and is therefore not Riemann integrable. Hence, (c) does not hold for $u=b_{1}$.
(e) We put $\bar{F}(u)$ for the inner upper integral, and $\underline{F}(u)$. As we argued in (c) we have $\bar{F}(u)=\underline{F}(u)=b_{2}-a_{2}$ for $a_{1}<u<b_{1}$. This means that the functions \bar{F} and \underline{F} are both integrable over $\left[a_{1}, b_{1}\right]$, with integral $\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)=\operatorname{vol}(B)$. This implies the two equalities.

Solution 4

(a) The sets $K_{n}^{ \pm}$are closed and bounded in \mathbb{R}^{2} hence compact. The boundary of $K_{n}^{ \pm}$ is a finite union of compact subsets of C^{1}-submanifolds of dimension 1 , hence Jordan negligable. It follows that $K_{n}^{ \pm}$are Jordan measurable.
(b) We will show this for K_{n}^{+}. The other case is treated in a similar fashion. Since K_{n}^{+}is compact Jordan measurable, and f continuous on K_{n}^{+}, it follows that f is Riemann-integrable over K_{n}^{+}. Hence $1_{K_{n}^{+}} f$ is a Riemann integrable function with compact support.

We note that K_{n}^{+}is a compact subset of the open set $\mathbb{R}^{2} \backslash L$, where $L=(-\infty, 0] \times$ $\{0\}$. Let $U=(0, \infty) \times(-\pi, \pi)$ and define $\Phi: U \rightarrow \mathbb{R}^{2}$ by $\Phi(r, \varphi)=r(\cos \varphi, \sin \varphi)$. Then Φ is bijective from U onto $\mathbb{R}^{2} \backslash L$, and

$$
D \Phi(r, \varphi)=\left(\begin{array}{cc}
\cos \varphi & -r \sin \varphi \\
\sin \varphi & r \cos \varphi
\end{array}\right)
$$

Now $\operatorname{det} D \Phi(r, \varphi)=r>0$ for $(r, \varphi) \in U$ and we see that Φ is a C^{1}-diffeomorphism from U onto $\mathbb{R}^{2} \backslash L$. We note that $\Phi^{-1}\left(K_{n}^{+}\right)=\left[\frac{1}{n}, 1\right] \times[-\pi / 2, \pi / 2]$. By application of the substitution of variables theorem, we have

$$
\begin{aligned}
\int_{K_{n}^{+}} f(x) d x & =\int_{\mathbb{R}^{2} \backslash L} 1_{K_{n}^{+}}(x) f(x) d x \\
& =\int_{U}\left(1_{K_{n}^{+}} f\right)(\Phi(y))|\operatorname{det} D \Phi(y)| d y \\
& =\int_{-\pi}^{\pi} \int_{0}^{\infty} 1_{K_{n}^{+}}(\Phi(r, \varphi)) f(\Phi(r, \varphi)) r d r d \varphi \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{1 / n}^{1} 1 \cdot \frac{1}{r} \cdot r d r d \varphi=\pi\left(1-\frac{1}{n}\right) .
\end{aligned}
$$

(c) We define $K_{n}=K_{n}^{-} \cup K_{n}^{+}$. Then K_{n} is a compact Jordan measurable set. Since K_{n}^{-}and K_{n}^{+}overlap on part of their boundaries, hence a negligable set, it follows
that $1_{K_{n}}-1_{K_{n}^{+}}-1_{K_{n}^{-}}$has Riemann integral zero, so that

$$
\int_{\mathbb{R}^{2} \backslash\{0\}} f(x) d x=\int_{K_{n}^{+}} f+\int_{K_{n}^{-}} f=2 \pi\left(1-\frac{1}{n}\right) .
$$

Taking the limit for $n \rightarrow \infty$, we see that $1_{\bar{D}} f$ is absolutely Riemann integrable over $\mathbb{R}^{2} \backslash\{0\}$ with integral 2π. As ∂D is Jordan negligable and compact, the same holds for $1_{D} f$. This easily implies that f is absolutely Riemann integrable over $D \backslash\{0\}$ with integral

$$
\int_{D \backslash\{0\}}\|x\|^{-1} d x=2 \pi
$$

