Retake Analyse in Meer Variabelen

2018-07-17, 9:00-12:00

Solution 1

(a) Clearly, Φ is C^{∞} and injective. By a simple calculation we have

$$D\Phi(t,\varphi) = \begin{pmatrix} e^t \cos\varphi & -e^t \sin\varphi \\ e^t \sin\varphi & e^t \cos\varphi \end{pmatrix}$$

It now follows that $\det(D\Phi(t, \varphi)) = e^{2t} \neq 0$ for all $(t, \varphi) \in U$. By injectivity of Φ it now follows from the inverse function theorem that Φ is a diffeomorphism from U onto an open subset V of \mathbb{R}^2 .

(b) We put $f^* = f \circ \Phi$. By the chain rule it follows that for $(t, \varphi) \in U$ we have

$$D(f^*)(t,\varphi) = (D_1 f(\Phi(t,\varphi)) \mid D_2 f(\Phi(t,\varphi))) D\Phi(t,\varphi)$$

hence

$$(D_1 f(\Phi(t, \varphi)) \mid D_2 f(\Phi(t, \varphi))) = \left(\frac{\partial}{\partial t} (f^*)(t, \varphi) \mid \frac{\partial}{\partial \varphi} (f^*)(t, \varphi)\right) D\Phi(t, \varphi)^{-1}.$$

Now

$$D\Phi(t,\varphi)^{-1} = e^{-t} \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix}.$$

This implies

$$D_1 f(\Phi(t, \varphi)) = \left[e^{-t} \cos \varphi \frac{\partial}{\partial t} - e^{-t} \sin \varphi \frac{\partial}{\partial \varphi} \right] (f^*)(t, \varphi),$$

$$D_2 f(\Phi(t, \varphi)) = \left[e^{-t} \sin \varphi \frac{\partial}{\partial t} + e^{-t} \cos \varphi \frac{\partial}{\partial \varphi} \right] (f^*)(t, \varphi),$$

which may be rewritten as the required equalities.

(c) Noting that $D_1 f: V \to \mathbb{R}$ is C^1 and applying (b) to $D_1 f$, we obtain

$$\begin{split} ([D_1^2 f] \circ \Phi)(t, \varphi)) &= [D_1(D_1 f) \circ \Phi](t, \varphi) \\ &= \left[e^{-t} \cos \varphi \frac{\partial}{\partial t} - e^{-t} \sin \varphi \frac{\partial}{\partial \varphi} \right] [D_1 f \circ \Phi](t, \varphi) \\ &= \left[e^{-t} \cos \varphi \frac{\partial}{\partial t} - e^{-t} \sin \varphi \frac{\partial}{\partial \varphi} \right]^2 f^*(t, \varphi) \\ &= \left[e^{-t} \cos \varphi \frac{\partial}{\partial t} - e^{-t} \sin \varphi \frac{\partial}{\partial \varphi} \right] \left[-e^{-t} \sin \varphi \frac{\partial}{\partial \varphi} \right] (f^*)(t, \varphi) \\ &= \left[2e^{-2t} \cos \varphi \sin \varphi \frac{\partial}{\partial \varphi} + e^{-2t} \sin^2 \varphi \frac{\partial^2}{\partial \varphi^2} \right] (f^*)(t, \varphi) \end{split}$$

Likewise,

$$([D_2^2 f] \circ \Phi)(r, \varphi) = \left[-2e^{-2t}\sin\varphi\cos\varphi\frac{\partial}{\partial\varphi} + e^{-2t}\cos^2\varphi\frac{\partial^2}{\partial\varphi^2}\right](f^*)(t, \varphi)$$

Adding up these identities, we find the desired identity.

Solution 2

(a) Let *c* be such a differentiable curve then $c'(t) \in T_{c(t)}M$ by definition of the tangent space. By the chain rule we now have

$$\frac{d}{dt}f(c(t)) = Df(c(t))c'(t) = 0,$$

for all $t \in (-1,1)$. Since $f \circ c : (-1,1) \to \mathbb{R}$ is differentiable, it follows that f(c(t)) = f(c(0)) for all -1 < t < 1.

(b) Since *M* is a submanifold, there exists an open neighborhood W^0 of x^0 in \mathbb{R}^n and a diffeomorphism Φ from W^0 onto an open neighborhood V^0 of 0 in \mathbb{R}^n with $\Phi(x^0) = 0$ and $\Phi(W^0 \cap M) = V^0 \cap (\mathbb{R}^{n-1} \times \{0\})$. We may fix $\delta > 0$ such that $V := (-\delta, \delta)^n$ is contained in V^0 . We note that $V \cap \Phi(W^0 \cap M) = (-\delta, \delta)^{n-1} \times \{0\}$. Let $y \in V \cap \Phi(W^0 \cap M)$. Then $y_n = 0$ and $d: t \mapsto ty$, $(-1, 1) \to V$ is a differentiable curve in V which is contained in $\Phi(W^0 \cap M)$.

By (a) it follows that f is constant along $\Phi^{-1} \circ d$. Hence $f \circ \Phi^{-1}$ is constant on (-1,1)y. Since this is true for all y, the function $f \circ \Phi^{-1}$ is constant on $V \cap \Phi(W^0 \cap M)$. This implies that f is constant on $\Phi^{-1}(V) \cap W^0 \cap M = \Phi^{-1}(V) \cap M$.

Put $W = \Phi^{-1}(V)$, then we see that *W* is an open neighborhood of x^0 in \mathbb{R}^n and *f* is constant on $W \cap M$.

(c) For every $x \in M$ there exists an open neighborhood W_x of x in \mathbb{R}^n such that f is constant on $W_x \cap M$. By compactness there exists a finite collection of points $x_1, \ldots, x_N \in M$ such that $M \subset \bigcup_j (W_{x_i} \cap M)$. It follows that $f(M) \subset \bigcup_j f(W_{x_i} \cap M) \subset \{f(x_1), \ldots, f(x_N)\}$, which is finite.

Solution 3

(a) We calculate

$$D_1 \Psi(\boldsymbol{\varphi}, \boldsymbol{\alpha}) = ((1 + \frac{1}{2} \cos \boldsymbol{\alpha}) \tau'(\boldsymbol{\varphi}), 0)^{\mathrm{T}}$$

and

$$D_2 \Psi(\boldsymbol{\varphi}, \boldsymbol{\alpha}) (-\sin \boldsymbol{\alpha} \ \tau(\boldsymbol{\varphi}), \cos \boldsymbol{\alpha})^{\mathrm{T}}$$

Accordingly,

$$D_{1}\Psi(\varphi,\alpha) \times D_{2}\Psi(\varphi,\alpha) = \begin{pmatrix} \cos \alpha (1+\frac{1}{2}\cos \alpha)\tau_{2}'(\varphi) \\ -\cos \alpha (1+\frac{1}{2}\cos \alpha)\tau_{1}'(\varphi) \\ (1+\frac{1}{2}\cos \alpha)\sin \alpha \end{pmatrix}$$
(*)

The length of this vector is given by

$$\|D_1\Psi(\varphi,\alpha)\times D_2\Psi(\varphi,\alpha)\|=2(1+\frac{1}{2}\cos\alpha).$$

If follows that this length is nowhere zero. Hence $D\Psi(\varphi, \alpha)$ is injective for all φ, α and we conclude that $D\Psi(\varphi, \alpha)$ is an immersion. The image of Ψ is the image of $\Psi([0, 2\pi] \times [0, 2\pi])$ which is compact, since $[0, 2\pi] \times [0, 2\pi]$ is compact and Ψ is continuous.

(b) Observe that $\varphi \mapsto (\tau(\varphi), 0)$ parametrizes a circle *C* in $x_3 = 0$ of center 0 and radius 2. Next write

$$\Psi(\varphi, \alpha) = (\tau(\varphi), 0) + (\cos \alpha \frac{\tau(\varphi)}{2}, \sin \alpha)$$

to see that T consists of the points in \mathbb{R}^3 of distance 1 to the circle C.

(c) Since Ψ is injective on $[0, 2\pi) \times [0, 2\pi)$ with image T, the area is calculated by

Area₂(T) =
$$\int_0^{2\pi} \int_0^{2\pi} ||D_1 \Psi(\varphi, \alpha) \times D_2 \Psi(\varphi, \alpha)|| d\varphi d\alpha$$

= $2\pi \int_0^{2\pi} 2(1 + \frac{1}{2} \cos \alpha) d\alpha = 8\pi^2.$

- (d) The boundary is given by $\partial M = C_1 \cup C_2$, where $C_1 = \Psi(\{0\} \times [0, 2\pi])$ and $C_2 = \Psi(\{\pi\} \times [0, 2\pi])$ are two circles of radius 1 in the plane $x_2 = 0$. The centers of these circles are (2, 0, 0) and (-2, 0, 0), respectively.
- (e) By an easy calculation it follows that $\operatorname{curl}(\xi) = 2v$. We equip *M* with the orientation determined by the normal (*). The associated unit normal is denoted by **n**. It follows from Stokes' theorem that the flux of *v* through *M* relative to this choice of normal is given by

$$\int_{M} v(x) \cdot \mathbf{n}(x) \, d_2 x = \frac{1}{2} \int_{\partial M} \xi(x) \cdot \mathbf{e}(x) \, d_1 x$$

Here $\mathbf{e}(x)$ denotes the positively oriented unit tangent vector to ∂M at the point $x \in \partial M$. We will proceed by computing the right-hand side, using that ∂M is the disjoint union the two circles C_1, C_2 .

The circle C_1 is parametrized by $\gamma_1 : \alpha \mapsto \Psi(0, \alpha) = (2 + \cos \alpha, 0, \sin \alpha)$ with $0 \le \alpha \le 2\pi$. Thus, $\gamma'_1(\alpha) = D_2 \Phi(0, \alpha) = (-\sin \alpha, 0, \cos \alpha)$, which has unit length, so that $\mathbf{e}(\gamma_1(\alpha)) = \pm \gamma'_1(\alpha)$. Now $-D_1 \Phi(0, \alpha)$ is tangent to M and normal to C_1 in the outward direction. Since the basis $-D_1 \Phi(0, \alpha)$, $D_2 \Phi(0, \alpha)$, $\mathbf{n}(\Phi(0, \alpha))$ is negatively oriented, it follows that the minus sign should be taken in \pm . Hence,

$$\frac{1}{2} \int_{C_1} \xi(x) \cdot \mathbf{e}(x) \, d_1 x = -\frac{1}{2} \int_0^{2\pi} \xi(\gamma_1(\alpha)) \cdot \gamma_1'(\alpha) \, d\alpha = \frac{1}{2} \int_0^{2\pi} (1 + 2\cos\alpha) \, d\alpha = \pi.$$

On the other hand, C_2 is parametrized by $\gamma_2 : \alpha \mapsto \Psi(\pi, \alpha) = (-2 - \cos \alpha, 0, \sin \alpha)$ with $0 \le \alpha \le 2\pi$. Again $\mathbf{e}(\gamma_2(\alpha)) = \pm \gamma'_2(\alpha)$. This time, $D_1 \Psi(0, \alpha)$ is tangent to M and outward normal to C_2 so that the plus sign should be taken. Hence,

$$\frac{1}{2}\int_{C_2} \xi(x) \cdot \mathbf{e}(x) \, d_1 x = \frac{1}{2}\int_0^{2\pi} \xi(\gamma_2(\alpha)) \cdot \gamma_2'(\alpha) \, d\alpha = \frac{1}{2}\int_0^{2\pi} (1+2\cos\alpha) \, d\alpha = \pi.$$

We conclude that the flux of *v* through *M* relative to **n** equals $\pi + \pi = 2\pi$.

Remark. The following solution is also allowed. By a second application of Stokes theorem, this time to the disks D_1 and D_2 with boundaries C_1 and C_2 , it follows that

$$\frac{1}{2}\int_{C_j}\boldsymbol{\xi}(x)\cdot\mathbf{e}(x)\,d_1x=\int_{D_j}\boldsymbol{v}(x)\cdot\mathbf{n}_j(x)\,d_2x.$$

Here the normal should be taken in accordance with the orientation of C_j . In both cases, $\mathbf{n}_j = (0,1,0) = v$ and we see that

$$\int_{D_j} v(x) \cdot \mathbf{n}_j(x) \, d_2 x = \int_{D_j} d_2 x = \operatorname{Area}_2(D_j) = \pi.$$

Thus, again, the flux is seen to be equal to $\pi + \pi = 2\pi$.

Solution 4

(a) Write $B = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Since the function φ is continuous and non-negative it follows by application of Thm 6.4.5 in the book that *f* is integrable over *G* and that

$$\int_{G} f(z)dz = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} \int_{0}^{\varphi(x)} f(x,s) \, ds \, dx_n \cdots dx_1$$
$$= \int_{B} \int_{0}^{\varphi(x)} f(x,s) \, ds \, dx$$
$$= \int_{B} \int_{0}^{1} f(x,\varphi(x)t)\varphi(x) \, dt \, dx;$$

in the last step we applied the substitution $s = \varphi(x)t$ to the inner integral. In the above, it is OK if the first step of the derivation is taken for granted.

(b) Since φ is everywhere on U strictly positive, it readily follows that the defined map Φ is injective. By substitution of variables, it is C^1 . Furthermore, for $1 \le j \le n$ we have

$$D_j \Phi(x,t) = (e_j, D_j \varphi(x)t)^{\mathrm{T}}$$

and

$$D_{n+1}\Phi(x,t) = (0,\varphi(x))^{\mathrm{T}}.$$

It follows that

$$D\Phi(x,t) = \left(\begin{array}{cc} I & 0\\ D\varphi(x)t & \varphi(x) \end{array}\right).$$

Hence, det $D\Phi(x,t) = \varphi(x) > 0$ for $(x,t) \in U$ and by the inverse function theorem it follows that Φ is a diffeomorphism as stated.

(c) It is readily verified that $G = \Phi(B \times I)$. Outside G we may extend f by zero. Then f is a compactly supported Riemann integrable function on $\Phi(U \times \mathbb{R})$.

By substitution of variables we have that

$$\int_{G} f(z) dz = \int_{\Phi(U \times \mathbb{R})} f(z) dz$$

$$= \int_{U \times \mathbb{R}} f(\Phi(y)) |\det D\Phi(y)| dy$$

$$= \int_{B \times [0,1]} f(\Phi(y)) |\det D\Phi(y)| dy$$

$$= \int_{B} \int_{0}^{1} f(\Phi(x,t)) |\det D\Phi(x,t)| dt dx$$

$$= \int_{B} \int_{0}^{1} f(x, \varphi(x)t) \varphi(x) dx.$$