Solution 1

(a) Clearly, Φ is C^{∞} and injective. By a simple calculation we have

$$
D \Phi(t, \varphi)=\left(\begin{array}{cc}
e^{t} \cos \varphi & -e^{t} \sin \varphi \\
e^{t} \sin \varphi & e^{t} \cos \varphi
\end{array}\right)
$$

It now follows that $\operatorname{det}(D \Phi(t, \varphi))=e^{2 t} \neq 0$ for all $(t, \varphi) \in U$. By injectivity of Φ it now follows from the inverse function theorem that Φ is a diffeomorphism from U onto an open subset V of \mathbb{R}^{2}.
(b) We put $f^{*}=f \circ \Phi$. By the chain rule it follows that for $(t, \varphi) \in U$ we have

$$
D\left(f^{*}\right)(t, \varphi)=\left(D_{1} f(\Phi(t, \varphi)) \mid D_{2} f(\Phi(t, \varphi))\right) D \Phi(t, \varphi)
$$

hence

$$
\left(D_{1} f(\Phi(t, \varphi)) \mid D_{2} f(\Phi(t, \varphi))\right)=\left(\frac{\partial}{\partial t}\left(f^{*}\right)(t, \varphi) \left\lvert\, \frac{\partial}{\partial \varphi}\left(f^{*}\right)(t, \varphi)\right.\right) D \Phi(t, \varphi)^{-1} .
$$

Now

$$
D \Phi(t, \varphi)^{-1}=e^{-t}\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right) .
$$

This implies

$$
\begin{aligned}
D_{1} f(\Phi(t, \varphi)) & =\left[e^{-t} \cos \varphi \frac{\partial}{\partial t}-e^{-t} \sin \varphi \frac{\partial}{\partial \varphi}\right]\left(f^{*}\right)(t, \varphi), \\
D_{2} f(\Phi(t, \varphi)) & =\left[e^{-t} \sin \varphi \frac{\partial}{\partial t}+e^{-t} \cos \varphi \frac{\partial}{\partial \varphi}\right]\left(f^{*}\right)(t, \varphi),
\end{aligned}
$$

which may be rewritten as the required equalities.
(c) Noting that $D_{1} f: V \rightarrow \mathbb{R}$ is C^{1} and applying (b) to $D_{1} f$, we obtain

$$
\begin{aligned}
\left.\left(\left[D_{1}^{2} f\right] \circ \Phi\right)(t, \varphi)\right) & =\left[D_{1}\left(D_{1} f\right) \circ \Phi\right](t, \varphi) \\
& =\left[e^{-t} \cos \varphi \frac{\partial}{\partial t}-e^{-t} \sin \varphi \frac{\partial}{\partial \varphi}\right]\left[D_{1} f \circ \Phi\right](t, \varphi) \\
& =\left[e^{-t} \cos \varphi \frac{\partial}{\partial t}-e^{-t} \sin \varphi \frac{\partial}{\partial \varphi}\right]^{2} f^{*}(t, \varphi) \\
& =\left[e^{-t} \cos \varphi \frac{\partial}{\partial t}-e^{-t} \sin \varphi \frac{\partial}{\partial \varphi}\right]\left[-e^{-t} \sin \varphi \frac{\partial}{\partial \varphi}\right]\left(f^{*}\right)(t, \varphi) \\
& =\left[2 e^{-2 t} \cos \varphi \sin \varphi \frac{\partial}{\partial \varphi}+e^{-2 t} \sin ^{2} \varphi \frac{\partial^{2}}{\partial \varphi^{2}}\right]\left(f^{*}\right)(t, \varphi)
\end{aligned}
$$

Likewise,

$$
\left(\left[D_{2}^{2} f\right] \circ \Phi\right)(r, \varphi)=\left[-2 e^{-2 t} \sin \varphi \cos \varphi \frac{\partial}{\partial \varphi}+e^{-2 t} \cos ^{2} \varphi \frac{\partial^{2}}{\partial \varphi^{2}}\right]\left(f^{*}\right)(t, \varphi)
$$

Adding up these identities, we find the desired identity.

Solution 2

(a) Let c be such a differentiable curve then $c^{\prime}(t) \in T_{c(t)} M$ by definition of the tangent space. By the chain rule we now have

$$
\frac{d}{d t} f(c(t))=D f(c(t)) c^{\prime}(t)=0
$$

for all $t \in(-1,1)$. Since $f \circ c:(-1,1) \rightarrow \mathbb{R}$ is differentiable, it follows that $f(c(t))=f(c(0))$ for all $-1<t<1$.
(b) Since M is a submanifold, there exists an open neighborhood W^{0} of x^{0} in \mathbb{R}^{n} and a diffeomorphism Φ from W^{0} onto an open neighborhood V^{0} of 0 in \mathbb{R}^{n} with $\Phi\left(x^{0}\right)=0$ and $\Phi\left(W^{0} \cap M\right)=V^{0} \cap\left(\mathbb{R}^{n-1} \times\{0\}\right)$. We may fix $\delta>0$ such that $V:=(-\delta, \delta)^{n}$ is contained in V^{0}. We note that $V \cap \Phi\left(W^{0} \cap M\right)=(-\delta, \delta)^{n-1} \times\{0\}$. Let $y \in V \cap \Phi\left(W^{0} \cap M\right)$. Then $y_{n}=0$ and $d: t \mapsto t y,(-1,1) \rightarrow V$ is a differentiable curve in V which is contained in $\Phi\left(W^{0} \cap M\right)$.
By (a) it follows that f is constant along $\Phi^{-1} \circ d$. Hence $f \circ \Phi^{-1}$ is constant on $(-1,1) y$. Since this is true for all y, the function $f \circ \Phi^{-1}$ is constant on $V \cap \Phi\left(W^{0} \cap M\right)$. This implies that f is constant on $\Phi^{-1}(V) \cap W^{0} \cap M=\Phi^{-1}(V) \cap M$.
Put $W=\Phi^{-1}(V)$, then we see that W is an open neighborhood of x^{0} in \mathbb{R}^{n} and f is constant on $W \cap M$.
(c) For every $x \in M$ there exists an open neighborhood W_{x} of x in \mathbb{R}^{n} such that f is constant on $W_{x} \cap M$. By compactness there exists a finite collection of points $x_{1}, \ldots, x_{N} \in M$ such that $M \subset$ $\cup_{j}\left(W_{x_{j}} \cap M\right)$. It follows that $f(M) \subset \cup_{j} f\left(W_{x_{j}} \cap M\right) \subset\left\{f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right\}$, which is finite.

Solution 3

(a) We calculate

$$
D_{1} \Psi(\varphi, \alpha)=\left(\left(1+\frac{1}{2} \cos \alpha\right) \tau^{\prime}(\varphi), 0\right)^{\mathrm{T}}
$$

and

$$
D_{2} \Psi(\varphi, \alpha)(-\sin \alpha \tau(\varphi), \cos \alpha)^{\mathrm{T}}
$$

Accordingly,

$$
D_{1} \Psi(\varphi, \alpha) \times D_{2} \Psi(\varphi, \alpha)=\left(\begin{array}{c}
\cos \alpha\left(1+\frac{1}{2} \cos \alpha\right) \tau_{2}^{\prime}(\varphi) \tag{*}\\
-\cos \alpha\left(1+\frac{1}{2} \cos \alpha\right) \tau_{1}^{\prime}(\varphi) \\
\left(1+\frac{1}{2} \cos \alpha\right) \sin \alpha
\end{array}\right)
$$

The length of this vector is given by

$$
\left\|D_{1} \Psi(\varphi, \alpha) \times D_{2} \Psi(\varphi, \alpha)\right\|=2\left(1+\frac{1}{2} \cos \alpha\right)
$$

If follows that this length is nowhere zero. Hence $D \Psi(\varphi, \alpha)$ is injective for all φ, α and we conclude that $D \Psi(\varphi, \alpha)$ is an immersion. The image of Ψ is the image of $\Psi([0,2 \pi] \times[0,2 \pi])$ which is compact, since $[0,2 \pi] \times[0,2 \pi]$ is compact and Ψ is continuous.
(b) Observe that $\varphi \mapsto(\tau(\varphi), 0)$ parametrizes a circle C in $x_{3}=0$ of center 0 and radius 2 . Next write

$$
\Psi(\varphi, \alpha)=(\tau(\varphi), 0)+\left(\cos \alpha \frac{\tau(\varphi)}{2}, \sin \alpha\right)
$$

to see that T consists of the points in \mathbb{R}^{3} of distance 1 to the circle C.
(c) Since Ψ is injective on $[0,2 \pi) \times[0,2 \pi)$ with image T, the area is calculated by

$$
\begin{aligned}
\operatorname{Area}_{2}(T) & =\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left\|D_{1} \Psi(\varphi, \alpha) \times D_{2} \Psi(\varphi, \alpha)\right\| d \varphi d \alpha \\
& =2 \pi \int_{0}^{2 \pi} 2\left(1+\frac{1}{2} \cos \alpha\right) d \alpha=8 \pi^{2}
\end{aligned}
$$

(d) The boundary is given by $\partial M=C_{1} \cup C_{2}$, where $C_{1}=\Psi(\{0\} \times[0,2 \pi])$ and $C_{2}=\Psi(\{\pi\} \times$ $[0,2 \pi])$ are two circles of radius 1 in the plane $x_{2}=0$. The centers of these circles are $(2,0,0)$ and $(-2,0,0)$, respectively.
(e) By an easy calculation it follows that $\operatorname{curl}(\xi)=2 v$. We equip M with the orientation determined by the normal $(*)$. The associated unit normal is denoted by \mathbf{n}. It follows from Stokes' theorem that the flux of v through M relative to this choice of normal is given by

$$
\int_{M} v(x) \cdot \mathbf{n}(x) d_{2} x=\frac{1}{2} \int_{\partial M} \xi(x) \cdot \mathbf{e}(x) d_{1} x
$$

Here $\mathbf{e}(x)$ denotes the positively oriented unit tangent vector to ∂M at the point $x \in \partial M$. We will proceed by computing the right-hand side, using that ∂M is the disjoint union the two circles C_{1}, C_{2}.
The circle C_{1} is parametrized by $\gamma_{1}: \alpha \mapsto \Psi(0, \alpha)=(2+\cos \alpha, 0, \sin \alpha)$ with $0 \leq \alpha \leq 2 \pi$. Thus, $\gamma_{1}^{\prime}(\alpha)=D_{2} \Phi(0, \alpha)=(-\sin \alpha, 0, \cos \alpha)$, which has unit length, so that $\mathbf{e}\left(\gamma_{1}(\alpha)\right)= \pm \gamma_{1}^{\prime}(\alpha)$. Now $-D_{1} \Phi(0, \alpha)$ is tangent to M and normal to C_{1} in the outward direction. Since the basis $-D_{1} \Phi(0, \alpha), D_{2} \Phi(0, \alpha), \mathbf{n}(\Phi(0, \alpha))$ is negatively oriented, it follows that the minus sign should be taken in \pm. Hence,

$$
\frac{1}{2} \int_{C_{1}} \xi(x) \cdot \mathbf{e}(x) d_{1} x=-\frac{1}{2} \int_{0}^{2 \pi} \xi\left(\gamma_{1}(\alpha)\right) \cdot \gamma_{1}^{\prime}(\alpha) d \alpha=\frac{1}{2} \int_{0}^{2 \pi}(1+2 \cos \alpha) d \alpha=\pi
$$

On the other hand, C_{2} is parametrized by $\gamma_{2}: \alpha \mapsto \Psi(\pi, \alpha)=(-2-\cos \alpha, 0, \sin \alpha)$ with $0 \leq$ $\alpha \leq 2 \pi$. Again $\mathbf{e}\left(\gamma_{2}(\alpha)\right)= \pm \gamma_{2}^{\prime}(\alpha)$. This time, $D_{1} \Psi(0, \alpha)$ is tangent to M and outward normal to C_{2} so that the plus sign should be taken. Hence,

$$
\frac{1}{2} \int_{C_{2}} \xi(x) \cdot \mathbf{e}(x) d_{1} x=\frac{1}{2} \int_{0}^{2 \pi} \xi\left(\gamma_{2}(\alpha)\right) \cdot \gamma_{2}^{\prime}(\alpha) d \alpha=\frac{1}{2} \int_{0}^{2 \pi}(1+2 \cos \alpha) d \alpha=\pi
$$

We conclude that the flux of v through M relative to \mathbf{n} equals $\pi+\pi=2 \pi$.
Remark. The following solution is also allowed. By a second application of Stokes theorem, this time to the disks D_{1} and D_{2} with boundaries C_{1} and C_{2}, it follows that

$$
\frac{1}{2} \int_{C_{j}} \xi(x) \cdot \mathbf{e}(x) d_{1} x=\int_{D_{j}} v(x) \cdot \mathbf{n}_{j}(x) d_{2} x
$$

Here the normal should be taken in accordance with the orientation of C_{j}. In both cases, $\mathbf{n}_{j}=$ $(0,1,0)=v$ and we see that

$$
\int_{D_{j}} v(x) \cdot \mathbf{n}_{j}(x) d_{2} x=\int_{D_{j}} d_{2} x=\operatorname{Area}_{2}\left(D_{j}\right)=\pi
$$

Thus, again, the flux is seen to be equal to $\pi+\pi=2 \pi$.

Solution 4

(a) Write $B=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$. Since the function φ is continuous and non-negative it follows by application of Thm 6.4.5 in the book that f is integrable over G and that

$$
\begin{aligned}
\int_{G} f(z) d z & =\int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} \int_{0}^{\varphi(x)} f(x, s) d s d x_{n} \cdots d x_{1} \\
& =\int_{B} \int_{0}^{\varphi(x)} f(x, s) d s d x \\
& =\int_{B} \int_{0}^{1} f(x, \varphi(x) t) \varphi(x) d t d x
\end{aligned}
$$

in the last step we applied the substitution $s=\varphi(x) t$ to the inner integral. In the above, it is OK if the first step of the derivation is taken for granted.
(b) Since φ is everywhere on U strictly positive, it readily follows that the defined map Φ is injective. By substitution of variables, it is C^{1}. Furthermore, for $1 \leq j \leq n$ we have

$$
D_{j} \Phi(x, t)=\left(e_{j}, D_{j} \varphi(x) t\right)^{\mathrm{T}}
$$

and

$$
D_{n+1} \Phi(x, t)=(0, \varphi(x))^{\mathrm{T}}
$$

It follows that

$$
D \Phi(x, t)=\left(\begin{array}{cc}
I & 0 \\
D \varphi(x) t & \varphi(x)
\end{array}\right) .
$$

Hence, $\operatorname{det} D \Phi(x, t)=\varphi(x)>0$ for $(x, t) \in U$ and by the inverse function theorem it follows that Φ is a diffeomorphism as stated.
(c) It is readily verified that $G=\Phi(B \times I)$. Outside G we may extend f by zero. Then f is a compactly supported Riemann integrable function on $\Phi(U \times \mathbb{R})$.

By substitution of variables we have that

$$
\begin{aligned}
\int_{G} f(z) d z & =\int_{\Phi(U \times \mathbb{R})} f(z) d z \\
& =\int_{U \times \mathbb{R}} f(\Phi(y))|\operatorname{det} D \Phi(y)| d y \\
& =\int_{B \times[0,1]} f(\Phi(y))|\operatorname{det} D \Phi(y)| d y \\
& =\int_{B} \int_{0}^{1} f(\Phi(x, t))|\operatorname{det} D \Phi(x, t)| d t d x \\
& =\int_{B} \int_{0}^{1} f(x, \varphi(x) t) \varphi(x) d x
\end{aligned}
$$

