Dit tentamen is in elektronische vorm beschikbaar gemaakt door de \mathcal{TBC} van A-Eskwadraat. A-Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten in dit tentamen.

Solution of Exercise 0.1

(i) We have

$$p(x,y) = x^{2} + 2y_{1}x + y_{1}^{2} - (y_{1}^{2} - y_{2}) = (x + y_{1})^{2} - \Delta(y).$$

If p(x, y) = 0 then the assertion of (\star) is obvious as squares are nonnegative. It follows that every solution $x \in \mathbf{R}$ of p(x, y) = 0 is given by $x_{\pm} = -y_1 \pm \sqrt{\Delta(y)}$; accordingly, maximally two do exist. Obviously $x_{\pm} = x_{\pm}$ if and only if $\Delta(y) = 0$; hence, the final assertion is a direct consequence of (\star) .

- (ii) The equality p(x, y) = 0 is equivalent with $y_2 = -x^2 2y_1x$, which shows that $N = im(\phi)$. Furthermore, N = graph(f) where $f : \mathbf{R}^2 \to \mathbf{R}$ with $f(x, y_1) = -x^2 - 2y_1x$ is a C^{∞} function; therefore N is a C^{∞} submanifold of \mathbf{R}^3 of dimension 2 on the basis of Definition 4.2.1.
- (iii) The identity Dp(x, y) = (*, *, 1) shows that the rank of Dp(x, y) equals 1 everywhere; in other words, Dp(x, y) is surjective, for all $(x, y) \in \mathbb{R}^3$. Hence the second assertion is a direct consequence of the Submersion Theorem 4.5.2.
- (iv) Differentiation immediately yields the following formulae:

$$D\Phi(x,y_1) = \begin{pmatrix} 0 & 1 \\ -2x - 2y_1 & -2x \end{pmatrix}$$
 and $\det D\Phi(x,y_1) = 2(x+y_1).$

By definition, the determinant vanishes at singular points. Hence, the identification of the set of singular points with S follows directly, whereas the equation above obviously is that of a straight line. The assertion on the rank of $D\Phi(x, y_1)$, for $(x, y_1) \in S$, follows from the fact that in this case

$$D\Phi(x,y_1) = \left(\begin{array}{cc} 0 & 1\\ 0 & * \end{array}\right).$$

- (v) Suppose $(x, y) \in \mathbf{R}^3$ satisfies $\Phi(x, y_1) = y$. Then, in particular, we have p(x, y) = 0 and so we obtain from (\star) in part (i) that $\Delta(y) \ge 0$. Hence the inclusions $\Phi(S) \subset P$ and $\Phi(\mathbf{R}^2 \setminus S) \subset \{y \in \mathbf{R}^2 \mid \Delta(y) > 0\}$ are obvious on the basis of (\star) again. Now we prove the reverse inclusions. According to part (i) the condition $\Delta(y) = 0$ on $y \in \mathbf{R}^2$ ensures that there is a unique solution $x \in \mathbf{R}$ for p(x, y) = 0, i.e., $y = \Phi(x, y_1)$; furthermore, (\star) then implies that $(x, y_1) \in S$. Next, suppose $y \in \mathbf{R}^2$ satisfies $\Delta(y) > 0$. From part (i) we then obtain the existence of two different solutions x_{\pm} of the equation p(x, y) = 0, and this gives two distinct elements $(x_{\pm}, y_1) \in \mathbf{R}^2$ both belonging to $\Phi^{-1}(\{y\})$. Using (\star) once more, we actually get $(x_{\pm}, y_1) \in \mathbf{R}^2 \setminus S$. In geometric terms, lines in \mathbf{R}^3 parallel to the x-axis, which means being of the form $\{(x, y) \in \mathbf{R}^3 \mid x \in \mathbf{R}\}$, intersect the surface N once, and twice, if $\Delta(y)$ is 0, and positive, respectively, and in no other case.
- (vi) By definition $\Phi = \pi \circ \phi$; hence, we obtain $\pi^{-1} \circ \Phi = \phi$ (abusing the notation for the inverse image). Application of this identity to the set *S* gives the equality $\phi(S) = \pi^{-1}(P)$. Next, suppose $(x, y_1) \in S$, in other words, $y_1 = -x$. Then $\phi(x, y_1) = (x, -x, y_2) \in \phi(S) = \pi^{-1}(P)$ implies $y_2 = x^2$. Accordingly

$$\phi(x, y_1) = (x, -x, x^2) = \sigma(x),$$
 that is, $\phi(S) \subset \Sigma.$

Conversely, $(x, y) \in \Sigma$ implies

$$(x,y) = \sigma(x) = (x, -x, x^2) = \phi(x, -x),$$
 i.e., $\Sigma \subset \phi(S)$

Now the last assertion. $(x, y) \in \Sigma$ means that x is a solution of $p(X, y) = (X - x)^2 = X^2 - 2xX + x^2 = 0$, and as a consequence x is a solution of $D_1p(X, y) = 2(X - x)$ too. Accordingly, $p(x, y) = D_1p(x, y) = 0$. Conversely, suppose $(x, y) \in \mathbb{R}^3$ satisfies p(x, y) = 0 and $D_1p(x, y) = 2(x + y_1) = 0$; hence, in particular, $y_1 = -x$. Hence $(x, y) \in \phi(S) = \Sigma$. (vii) If y_1 is fixed and p(x, y) = 0, we get from (\star) in part (i)

$$y_2 = y_1^2 - \Delta(y) = y_1^2 - (x + y_1)^2.$$

The right-hand side is maximal if $x + y_1 = 0$ and if this is the case it assumes the value y_1^2 . Hence the vertex of the parabola has coordinates $(-y_1, y_1, y_1^2) = \sigma(-y_1)$ and it also opens downward.

- (viii) In view of $D\sigma(x) = (1, -1, 2x)$, a parametric representation for $\Lambda(x)$ is given by $\sigma(x) + \mathbf{R}(1, -1, 2x)$.
- (ix) (0, -1, 2x) is the orthogonal projection of $D\sigma(x)$ onto the (y_1, y_2) -plane along the x-axis; hence, N(x) may be described as given. By definition, the lines N(x) are disjoint, for distinct $x \in \mathbf{R}$. Furthermore, consider $(x, y) \in N(x)$, that is, satisfying $y_1 = -x - \lambda$ and $y_2 = x^2 + 2\lambda x$, for some $\lambda \in \mathbf{R}$. Then $(x, y) \in N$ as follows from

$$p(x,y) = x^{2} + 2y_{1}x + y_{2} = x^{2} - 2(x+\lambda)x + x^{2} + 2\lambda x = 0.$$

Accordingly, every N(x) is contained in N. Conversely, suppose $x \in \mathbf{R}$ is fixed and $(x, y) \in \mathbf{R}^3$ belongs to N. Then there exists $\lambda \in \mathbf{R}$ such that $y_1 = -x - \lambda$, while p(x, y) = 0 now implies

$$y_2 = -x^2 - 2y_1x = x^2 + 2\lambda x;$$
 i.e., $(x, y) \in N(x).$

The equality $N(x) = \sigma(x) + \mathbf{R}(0, -1, 2x)$ implies that N(x) intersects Σ in $\sigma(x)$, and this is the only point of intersection as the elements of Σ are uniquely determined by their first component.

2