Solution of Exercise 0.1

(i) We have

$$
p(x, y)=x^{2}+2 y_{1} x+y_{1}^{2}-\left(y_{1}^{2}-y_{2}\right)=\left(x+y_{1}\right)^{2}-\Delta(y)
$$

If $p(x, y)=0$ then the assertion of (\star) is obvious as squares are nonnegative. It follows that every solution $x \in \mathbf{R}$ of $p(x, y)=0$ is given by $x_{ \pm}=-y_{1} \pm \sqrt{\Delta(y)}$; accordingly, maximally two do exist. Obviously $x_{+}=x_{-}$if and only if $\Delta(y)=0$; hence, the final assertion is a direct consequence of (\star).
(ii) The equality $p(x, y)=0$ is equivalent with $y_{2}=-x^{2}-2 y_{1} x$, which shows that $N=\operatorname{im}(\phi)$. Furthermore, $N=\operatorname{graph}(f)$ where $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ with $f\left(x, y_{1}\right)=-x^{2}-2 y_{1} x$ is a C^{∞} function; therefore N is a C^{∞} submanifold of \mathbf{R}^{3} of dimension 2 on the basis of Definition 4.2.1.
(iii) The identity $D p(x, y)=(*, *, 1)$ shows that the rank of $D p(x, y)$ equals 1 everywhere; in other words, $D p(x, y)$ is surjective, for all $(x, y) \in \mathbf{R}^{3}$. Hence the second assertion is a direct consequence of the Submersion Theorem 4.5.2.
(iv) Differentiation immediately yields the following formulae:

$$
D \Phi\left(x, y_{1}\right)=\left(\begin{array}{cc}
0 & 1 \\
-2 x-2 y_{1} & -2 x
\end{array}\right) \quad \text { and } \quad \operatorname{det} D \Phi\left(x, y_{1}\right)=2\left(x+y_{1}\right)
$$

By definition, the determinant vanishes at singular points. Hence, the identification of the set of singular points with S follows directly, whereas the equation above obviously is that of a straight line. The assertion on the rank of $D \Phi\left(x, y_{1}\right)$, for $\left(x, y_{1}\right) \in S$, follows from the fact that in this case

$$
D \Phi\left(x, y_{1}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & *
\end{array}\right)
$$

(v) Suppose $(x, y) \in \mathbf{R}^{3}$ satisfies $\Phi\left(x, y_{1}\right)=y$. Then, in particular, we have $p(x, y)=0$ and so we obtain from (\star) in part (i) that $\Delta(y) \geq 0$. Hence the inclusions $\Phi(S) \subset P$ and $\Phi\left(\mathbf{R}^{2} \backslash S\right) \subset\{y \in$ $\left.\mathbf{R}^{2} \mid \Delta(y)>0\right\}$ are obvious on the basis of (\star) again. Now we prove the reverse inclusions. According to part (i) the condition $\Delta(y)=0$ on $y \in \mathbf{R}^{2}$ ensures that there is a unique solution $x \in \mathbf{R}$ for $p(x, y)=0$, i.e., $y=\Phi\left(x, y_{1}\right)$; furthermore, (\star) then implies that $\left(x, y_{1}\right) \in S$. Next, suppose $y \in \mathbf{R}^{2}$ satisfies $\Delta(y)>0$. From part (i) we then obtain the existence of two different solutions $x_{ \pm}$of the equation $p(x, y)=0$, and this gives two distinct elements $\left(x_{ \pm}, y_{1}\right) \in \mathbf{R}^{2}$ both belonging to $\Phi^{-1}(\{y\})$. Using (\star) once more, we actually get $\left(x_{ \pm}, y_{1}\right) \in \mathbf{R}^{2} \backslash S$. In geometric terms, lines in \mathbf{R}^{3} parallel to the x-axis, which means being of the form $\left\{(x, y) \in \mathbf{R}^{3} \mid x \in \mathbf{R}\right\}$, intersect the surface N once, and twice, if $\Delta(y)$ is 0 , and positive, respectively, and in no other case.
(vi) By definition $\Phi=\pi \circ \phi$; hence, we obtain $\pi^{-1} \circ \Phi=\phi$ (abusing the notation for the inverse image). Application of this identity to the set S gives the equality $\phi(S)=\pi^{-1}(P)$. Next, suppose $\left(x, y_{1}\right) \in S$, in other words, $y_{1}=-x$. Then $\phi\left(x, y_{1}\right)=\left(x,-x, y_{2}\right) \in \phi(S)=\pi^{-1}(P)$ implies $y_{2}=x^{2}$. Accordingly

$$
\phi\left(x, y_{1}\right)=\left(x,-x, x^{2}\right)=\sigma(x), \quad \text { that is }, \quad \phi(S) \subset \Sigma
$$

Conversely, $(x, y) \in \Sigma$ implies

$$
(x, y)=\sigma(x)=\left(x,-x, x^{2}\right)=\phi(x,-x), \quad \text { i.e., } \quad \Sigma \subset \phi(S)
$$

Now the last assertion. $(x, y) \in \Sigma$ means that x is a solution of $p(X, y)=(X-x)^{2}=$ $X^{2}-2 x X+x^{2}=0$, and as a consequence x is a solution of $D_{1} p(X, y)=2(X-x)$ too. Accordingly, $p(x, y)=D_{1} p(x, y)=0$. Conversely, suppose $(x, y) \in \mathbf{R}^{3}$ satisfies $p(x, y)=0$ and $D_{1} p(x, y)=2\left(x+y_{1}\right)=0$; hence, in particular, $y_{1}=-x$. Hence $(x, y) \in \phi(S)=\Sigma$.
(vii) If y_{1} is fixed and $p(x, y)=0$, we get from (\star) in part (i)

$$
y_{2}=y_{1}^{2}-\Delta(y)=y_{1}^{2}-\left(x+y_{1}\right)^{2} .
$$

The right-hand side is maximal if $x+y_{1}=0$ and if this is the case it assumes the value y_{1}^{2}. Hence the vertex of the parabola has coordinates $\left(-y_{1}, y_{1}, y_{1}^{2}\right)=\sigma\left(-y_{1}\right)$ and it also opens downward.
(viii) In view of $D \sigma(x)=(1,-1,2 x)$, a parametric representation for $\Lambda(x)$ is given by $\sigma(x)+$ $\mathbf{R}(1,-1,2 x)$.
(ix) $(0,-1,2 x)$ is the orthogonal projection of $D \sigma(x)$ onto the $\left(y_{1}, y_{2}\right)$-plane along the x-axis; hence, $N(x)$ may be described as given. By definition, the lines $N(x)$ are disjoint, for distinct $x \in \mathbf{R}$. Furthermore, consider $(x, y) \in N(x)$, that is, satisfying $y_{1}=-x-\lambda$ and $y_{2}=x^{2}+2 \lambda x$, for some $\lambda \in \mathbf{R}$. Then $(x, y) \in N$ as follows from

$$
p(x, y)=x^{2}+2 y_{1} x+y_{2}=x^{2}-2(x+\lambda) x+x^{2}+2 \lambda x=0
$$

Accordingly, every $N(x)$ is contained in N. Conversely, suppose $x \in \mathbf{R}$ is fixed and $(x, y) \in \mathbf{R}^{3}$ belongs to N. Then there exists $\lambda \in \mathbf{R}$ such that $y_{1}=-x-\lambda$, while $p(x, y)=0$ now implies

$$
y_{2}=-x^{2}-2 y_{1} x=x^{2}+2 \lambda x ; \quad \text { i.e., } \quad(x, y) \in N(x)
$$

The equality $N(x)=\sigma(x)+\mathbf{R}(0,-1,2 x)$ implies that $N(x)$ intersects Σ in $\sigma(x)$, and this is the only point of intersection as the elements of Σ are uniquely determined by their first component.

