Solution of Exercise 1.1

(i) See Example 7.9.1.
(ii) $\phi(x, \alpha)=\phi\left(x^{\prime}, \alpha^{\prime}\right)$ implies by projection onto the first coordinate that $x=x^{\prime}$. Consideration of the last two coordinates then leads to $\cos \alpha=\cos \alpha^{\prime}$ and $\sin \alpha=\sin \alpha^{\prime}$, that is $\alpha=\alpha^{\prime}$. It is straightforward that $\operatorname{im}(\phi)$ is all of S^{2} except the half-circle $\left\{(x,-s(x), 0) \in S^{2}| | x \mid \leq 1\right\}$ connecting the opposite points $x_{ \pm}:=(\pm 1,0,0)$. The half-circle is compact and of dimension 1 which implies that it is negligible for 2-dimensional integration (see page 526). We have

$$
C^{2}=\left\{x \in \mathbf{R}^{3}| | x_{1} \mid<1, x_{2}^{2}+x_{3}^{2}=1\right\}
$$

which shows that it is a cylinder, parallel to the x_{1}-axis. The preceding argument implies that ψ induces a bijection between C^{2} and $S^{2} \backslash\left\{x_{ \pm}\right\}$. Given $(x, y) \in C^{2}$, its image $\psi(x, y) \in S^{2}$ may be obtained in the following geometrical manner. Denote by ℓ the unique straight line in \mathbf{R}^{3} containing (x, y) that is parallel to the plane $\left\{x \in \mathbf{R}^{3} \mid x_{1}=0\right\}$ and that intersects the x_{1}-axis. Next define $\psi(x, y)$ to be the point of intersection of ℓ with S^{2} of shortest distance to (x, y).

Illustration: Map of the surface of the Earth based on Lambert's cylindrical projection
(iii) On the basis of the chain rule one sees

$$
D_{j} s(x)=\frac{1}{2 s(x)}\left(-2 x_{j}\right)=-\frac{x_{j}}{s(x)} ; \quad \text { in other words } \quad \operatorname{grad} s(x)=-\frac{1}{s(x)} x^{t}
$$

which leads to the matrix for $D \phi(x, \alpha)$. Obviously $D \phi(x, \alpha)^{t} D \phi(x, \alpha)$ has the following matrix:

$$
\left(\begin{array}{ccc}
I_{n-2} & -\frac{\cos \alpha}{s(x)} x & -\frac{\sin \alpha}{s(x)} x \\
0_{n-2} & -s(x) \sin \alpha & s(x) \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
I_{n-2} & 0_{n-2} \\
-\frac{\cos \alpha}{s(x)} x^{t} & -s(x) \sin \alpha \\
-\frac{\sin \alpha}{s(x)} x^{t} & s(x) \cos \alpha
\end{array}\right)
$$

A-priori one knows the resulting matrix to be symmetric. Therefore, when multiplying the i-th row in the first matrix with the j-th column in the second, one has to distinguish only three cases: $1 \leq i, j \leq n-2$, which leads to the upper-left matrix belonging to $\operatorname{Mat}(n-2, \mathbf{R})$ in the answer; $i=j=n-1$, which gives the lower-right entry as a consequence of $\sin ^{2}+\cos ^{2}=1$; and $i=n-1$ and $1 \leq j \leq n-2$, which leads to $\sin \alpha \cos \alpha x_{j}-\cos \alpha \sin \alpha x_{j}=0$.
(iv) ϕ is of class C^{∞} since all of its component functions are. Next $\operatorname{im}(\phi) \subset S^{n-1}$; indeed, for $(x, \alpha) \in D$,

$$
\|\phi(x, \alpha)\|^{2}=\|x\|^{2}+s(x)^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=\|x\|^{2}+1-\|x\|^{2}=1
$$

Actually, $\operatorname{im}(\phi)$ is all of S^{n-1} except the set $\left\{(x,-s(x), 0) \in S^{n-1} \mid x \in \overline{B^{n-2}}\right\}$. This set is compact and of dimension $=\operatorname{dim}\left(B^{n-2}\right)=n-2$; that implies that it is negligible for $(n-1)$-dimensional integration (see page 526). Furthermore, ϕ is an embedding if it is immersive, injective and has a continuous inverse upon restriction to its image. Now, suppose $h \in \mathbf{R}^{n-1}$ satisfies $\mathbf{R}^{n} \ni D \phi(x, \alpha) h=0$. In view of part (iii) the upper $n-2$ entries of the image vector give $h_{1}=\cdots=h_{n-2}=0$, while the two bottom entries lead to $\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) h_{n-1}=$ $h_{n-1}=0$. Accordingly, $D \phi(x, \alpha)$ is injective, for all $(x, \alpha) \in D$. As in part (ii) one shows directly that ϕ is injective on D. Finally, if $\phi(x, \alpha)=y \in \mathbf{R}^{n}$, then projection of y onto its upper $n-2$ entries produces x, while $\alpha=2 \arctan \left(\frac{y_{n}}{1+y_{n-1}}\right)$. This implies that the inverse mapping $\phi^{-1}: \phi(D) \rightarrow D$ with $\phi(x, \alpha) \mapsto(x, \alpha)$ is continuous.
(v) Exactly the same arguments as in the solution to Exercise 6.23 .(iii) imply

$$
\operatorname{det}\left(I_{n-2}+\frac{1}{s(x)^{2}} x x^{t}\right)=1+\frac{\|x\|^{2}}{s(x)^{2}}=\frac{1}{s(x)^{2}}
$$

As a consequence

$$
\omega_{\phi}(x, \alpha)=\sqrt{\operatorname{det}\left(D \phi(x, \alpha)^{t} D \phi(x, \alpha)\right)}=\frac{1}{s(x)} s(x)=1
$$

(vi) $\operatorname{im}(\phi)=S^{n-1}$ up to a negligible set according to part (iv), therefore one obtains from parts (v) and (i)

$$
a_{n-1}=\int_{S^{n-1}} d_{n-1} y=\int_{D} \omega_{\phi}(y) d y=\int_{B^{n-2}} d x \int_{-\pi}^{\pi} d \alpha=2 \pi v_{n-2}=2 \pi \frac{a_{n-3}}{n-2}
$$

This implies directly

$$
v_{n}=\frac{1}{n} a_{n-1}=\frac{2 \pi}{n} \frac{a_{n-3}}{n-2}=\frac{2 \pi}{n} v_{n-2} .
$$

The formulae for v_{n} are a direct consequence of the identities $v_{2}=\pi$ and $v_{1}=2$, while the formula for $a_{2 n-1}$ follows from part (i).
(vii) It is straightforward that Ψ is a C^{∞} diffeomorphism onto its image. This image consists of $B^{2 n}$ under omission of the union of the origin and of all the sets (this union is negligible for $2 n$-dimensional integration)

$$
\left\{\left(x_{1}, \ldots, x_{2 j-1},-z_{j}, 0, x_{2 j+1}, \ldots, x_{2 n}\right) \in B^{2 n} \mid 0<z_{j}<1\right\} \quad(1 \leq j \leq n)
$$

Write $\Psi(y, \alpha)=\Psi^{\prime}\left(y_{1}, \alpha_{1}, \cdots, y_{n}, \alpha_{n}\right)$. Since the difference between Ψ and Ψ^{\prime} is a permutation of the coordinates, one has

$$
|\operatorname{det} D \Psi(y, \alpha)|=\left|\operatorname{det} D \Psi^{\prime}\left(y_{1}, \alpha_{1}, \cdots, y_{n}, \alpha_{n}\right)\right|=\prod_{1 \leq j \leq n}\left|\begin{array}{cc}
\frac{\cos \alpha_{j}}{2 \sqrt{y_{j}}} & -\sqrt{y_{j}} \sin \alpha_{j} \\
\frac{\sin \alpha_{j}}{2 \sqrt{y_{j}}} & \sqrt{y_{j}} \cos \alpha_{j}
\end{array}\right|=\frac{1}{2^{n}}
$$

