Dit tentamen is in elektronische vorm beschikbaar gemaakt door de \mathcal{BC} van A-Eskwadraat. A-Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten in dit tentamen.

Solution of Exercise 1.1

- (i) See Example 7.9.1.
- (ii) $\phi(x, \alpha) = \phi(x', \alpha')$ implies by projection onto the first coordinate that x = x'. Consideration of the last two coordinates then leads to $\cos \alpha = \cos \alpha'$ and $\sin \alpha = \sin \alpha'$, that is $\alpha = \alpha'$. It is straightforward that $\operatorname{im}(\phi)$ is all of S^2 except the half-circle $\{(x, -s(x), 0) \in S^2 \mid |x| \le 1\}$ connecting the opposite points $x_{\pm} := (\pm 1, 0, 0)$. The half-circle is compact and of dimension 1 which implies that it is negligible for 2-dimensional integration (see page 526). We have

$$C^{2} = \{ x \in \mathbf{R}^{3} \mid |x_{1}| < 1, x_{2}^{2} + x_{3}^{2} = 1 \},\$$

which shows that it is a cylinder, parallel to the x_1 -axis. The preceding argument implies that ψ induces a bijection between C^2 and $S^2 \setminus \{x_{\pm}\}$. Given $(x, y) \in C^2$, its image $\psi(x, y) \in S^2$ may be obtained in the following geometrical manner. Denote by ℓ the unique straight line in \mathbb{R}^3 containing (x, y) that is parallel to the plane $\{x \in \mathbb{R}^3 \mid x_1 = 0\}$ and that intersects the x_1 -axis. Next define $\psi(x, y)$ to be the point of intersection of ℓ with S^2 of shortest distance to (x, y).

Illustration: Map of the surface of the Earth based on Lambert's cylindrical projection

(iii) On the basis of the chain rule one sees

$$D_j s(x) = \frac{1}{2s(x)} (-2x_j) = -\frac{x_j}{s(x)}; \quad \text{in other words} \quad \text{grad } s(x) = -\frac{1}{s(x)} x^t,$$

which leads to the matrix for $D\phi(x, \alpha)$. Obviously $D\phi(x, \alpha)^t D\phi(x, \alpha)$ has the following matrix:

$$\begin{pmatrix} I_{n-2} & -\frac{\cos\alpha}{s(x)}x & -\frac{\sin\alpha}{s(x)}x \\ 0_{n-2} & -s(x)\sin\alpha & s(x)\cos\alpha \end{pmatrix} \begin{pmatrix} I_{n-2} & 0_{n-2} \\ -\frac{\cos\alpha}{s(x)}x^t & -s(x)\sin\alpha \\ -\frac{\sin\alpha}{s(x)}x^t & s(x)\cos\alpha \end{pmatrix}.$$

A-priori one knows the resulting matrix to be symmetric. Therefore, when multiplying the *i*-th row in the first matrix with the *j*-th column in the second, one has to distinguish only three cases: $1 \le i, j \le n-2$, which leads to the upper-left matrix belonging to $Mat(n-2, \mathbf{R})$ in the answer; i = j = n - 1, which gives the lower-right entry as a consequence of $\sin^2 + \cos^2 = 1$; and i = n - 1 and $1 \le j \le n - 2$, which leads to $\sin \alpha \cos \alpha x_j - \cos \alpha \sin \alpha x_j = 0$.

(iv) ϕ is of class C^{∞} since all of its component functions are. Next $im(\phi) \subset S^{n-1}$; indeed, for $(x, \alpha) \in D$,

$$\|\phi(x,\alpha)\|^2 = \|x\|^2 + s(x)^2(\cos^2\alpha + \sin^2\alpha) = \|x\|^2 + 1 - \|x\|^2 = 1.$$

Actually, $\operatorname{im}(\phi)$ is all of S^{n-1} except the set $\{(x, -s(x), 0) \in S^{n-1} \mid x \in \overline{B^{n-2}}\}$. This set is compact and of dimension $= \dim(B^{n-2}) = n-2$; that implies that it is negligible for (n-1)-dimensional integration (see page 526). Furthermore, ϕ is an embedding if it is immersive, injective and has a continuous inverse upon restriction to its image. Now, suppose $h \in \mathbb{R}^{n-1}$ satisfies $\mathbb{R}^n \ni D\phi(x, \alpha)h = 0$. In view of part (iii) the upper n-2 entries of the image vector give $h_1 = \cdots = h_{n-2} = 0$, while the two bottom entries lead to $(\sin^2 \alpha + \cos^2 \alpha)h_{n-1} = h_{n-1} = 0$. Accordingly, $D\phi(x, \alpha)$ is injective, for all $(x, \alpha) \in D$. As in part (ii) one shows directly that ϕ is injective on D. Finally, if $\phi(x, \alpha) = y \in \mathbb{R}^n$, then projection of y onto its upper n-2 entries produces x, while $\alpha = 2 \arctan(\frac{y_n}{1+y_{n-1}})$. This implies that the inverse mapping $\phi^{-1}: \phi(D) \to D$ with $\phi(x, \alpha) \mapsto (x, \alpha)$ is continuous.

(v) Exactly the same arguments as in the solution to Exercise 6.23.(iii) imply

$$\det\left(I_{n-2} + \frac{1}{s(x)^2}xx^t\right) = 1 + \frac{\|x\|^2}{s(x)^2} = \frac{1}{s(x)^2}.$$

As a consequence

$$\omega_{\phi}(x,\alpha) = \sqrt{\det\left(D\phi(x,\alpha)^{t} D\phi(x,\alpha)\right)} = \frac{1}{s(x)}s(x) = 1$$

(vi) $im(\phi) = S^{n-1}$ up to a negligible set according to part (iv), therefore one obtains from parts (v) and (i)

$$a_{n-1} = \int_{S^{n-1}} d_{n-1}y = \int_D \omega_\phi(y) \, dy = \int_{B^{n-2}} dx \int_{-\pi}^{\pi} d\alpha = 2\pi v_{n-2} = 2\pi \frac{a_{n-3}}{n-2}.$$

This implies directly

$$v_n = \frac{1}{n}a_{n-1} = \frac{2\pi}{n}\frac{a_{n-3}}{n-2} = \frac{2\pi}{n}v_{n-2}$$

The formulae for v_n are a direct consequence of the identities $v_2 = \pi$ and $v_1 = 2$, while the formula for a_{2n-1} follows from part (i).

(vii) It is straightforward that Ψ is a C^{∞} diffeomorphism onto its image. This image consists of B^{2n} under omission of the union of the origin and of all the sets (this union is negligible for 2n-dimensional integration)

$$\{(x_1, \dots, x_{2j-1}, -z_j, 0, x_{2j+1}, \dots, x_{2n}) \in B^{2n} \mid 0 < z_j < 1\} \qquad (1 \le j \le n).$$

Write $\Psi(y, \alpha) = \Psi'(y_1, \alpha_1, \cdots, y_n, \alpha_n)$. Since the difference between Ψ and Ψ' is a permutation of the coordinates, one has

000 0

$$|\det D\Psi(y,\alpha)| = |\det D\Psi'(y_1,\alpha_1,\cdots,y_n,\alpha_n)| = \prod_{1 \le j \le n} \begin{vmatrix} \frac{\cos \alpha_j}{2\sqrt{y_j}} & -\sqrt{y_j}\sin \alpha_j \\ \frac{\sin \alpha_j}{2\sqrt{y_j}} & \sqrt{y_j}\cos \alpha_j \end{vmatrix} = \frac{1}{2^n}.$$

9