Uitwerking ${ }^{1}$ Analyse in Meer Variabelen (WISB212) 2007-04-17

Exercise 0.1

(i) The function $\sqrt{\cdot}:] 0, \infty\left[\rightarrow \mathbb{R}\right.$ is of class C^{∞}. Hence, f is the composition of C^{∞} functions, therefore the assertion follows from the chain rule.
(ii) $f^{2}(x)=\langle x, x\rangle$ implies $D f^{2}(x) h=2\langle A x, A h\rangle$ according ot Corollary 2.4.3.(ii). Hence the desired formula follows from $2 f(x) D f(x) h=D f^{2}(x) h=2\langle A x, A h\rangle$ on account of the chain rule. Furthermore

$$
D f(x) h=\frac{\langle A x, A h\rangle}{f(x)}=\frac{1}{f(x)}(A x)^{t} A h=\frac{1}{f(x)} x^{t} A^{t} A h .
$$

(iii) We have

$$
D_{j} f(x)=D f(x) e_{j}=\frac{\left\langle A x, A e_{j}\right\rangle}{f(x)}
$$

Application of Corollary 2.4.3.(iii) and (ii) as well as part (ii) implies

$$
D_{j}^{2} f(x)=D\left(D_{j} f\right)(x) e_{j}=\frac{\left\|A e_{j}\right\|^{2}}{f(x)}-\frac{\left\langle A x, A e_{j}\right\rangle^{2}}{f^{3}(x)}
$$

(iv) Summation of the preceeding identities for j running from 1 to n gives

$$
\triangle f(x)=\sum_{1 \leq j \leq n} D_{j}^{2} f(x)=\frac{1}{f(x)} \sum_{1 \leq j \leq n}\left\|A e_{j}\right\|^{2}-\frac{1}{f^{3}(x)} \sum_{1 \leq j \leq n}\left\langle A^{t} A x, e_{j}\right\rangle^{2}
$$

Furthermore, note that, for all $y \in \mathbb{R}^{n}$,

$$
\sum_{1 \leq j \leq n}\left\langle y, e_{j}\right\rangle^{2}=\left\|\sum_{1 \leq j \leq n}\left\langle y, e_{j}\right\rangle e_{j}\right\|^{2}=\|y\|^{2}
$$

(v) In this case we obtain $\triangle(\|\cdot\|)(x)=\frac{n-1}{\|x\|}$, for $x \in \mathbb{R}^{n} \backslash\{0\}$.

Exercise 0.3

(i) We have $D \phi(x)=\left(\begin{array}{cc}3\left(\frac{x_{1}}{x_{2}}\right)^{2} & -2\left(\frac{x_{1}}{x_{2}}\right)^{3} \\ -2\left(\frac{x_{2}}{x_{1}}\right)^{3} & 3\left(\frac{x_{2}}{x_{1}}\right)^{2}\end{array}\right)$ and so $\operatorname{det} D \Phi(x)=9-4=5$.
(ii) Given arbitrary $y \in \mathbb{R}_{+}^{2}$, consider the equation $\Phi(x)=y$ for $x \in \mathbb{R}_{+}^{2}$; then $\frac{x_{1}^{3}}{x_{2}^{2}}=y_{1}$ and $\frac{x_{2}^{3}}{x_{1}^{2}}=y_{2}$. Multiplication and division of these equalities leads to

$$
x_{1} x_{2}=y_{1} y_{2} \quad \text { and } \quad\left(\frac{x_{1}}{x_{2}}\right)^{5}=\frac{y_{1}}{y_{2}} . \quad \text { So } \quad x_{1} x_{2}=y_{1} y_{2} \quad \text { and } \quad \frac{x_{1}}{x_{2}}=\frac{y_{1}^{\frac{1}{5}}}{y_{2}^{\frac{1}{5}}},
$$

and multiplication of the equalities now gives $x_{1}^{2}=y_{1}^{\frac{6}{5}} y_{2}^{\frac{4}{5}}$. Accordingly, $x_{1}=y_{1}^{\frac{3}{5}} y_{2}^{\frac{2}{5}}=\left(y_{1} y_{2}\right)^{\frac{2}{5}} y_{1}^{\frac{1}{5}}$ because x_{1}, y_{1} and $y_{2} \in \mathbb{R}_{+}$. Similarly, we obtain the desired formula for x_{2}. It follows that Φ and Ψ are each other's inverses. On \mathbb{R}_{+}^{2} the mapping Ψ is of class C^{∞}, which implies that Φ is a C^{∞} diffeomorphism. From part (i) and the multiplicative property of the determinant we obtain $\operatorname{det} D \Phi(y)=\frac{1}{5}$.

[^0](iii) We have
$$
g \circ \Psi(y)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}\right)-5 a\left(y_{1} y_{2}\right)^{\frac{8}{5}}\left(y_{1} y_{2}\right)^{\frac{2}{5}}=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right) .
$$

This implies $x=\Psi(y) \in U$ if and only if $g(x)=\left(y_{1} y_{2}\right)^{2}\left(y_{1}+y_{2}-5 a\right)<0$ if and only $y_{1}+y_{2}-5 a$ if and only if $y \in V$.

Exercise 0.4

(i) We have

$$
D g(x)=5\left(x_{1}\left(x_{1}^{3}-2 a x_{2}^{2}\right), x_{2}\left(x_{2}^{3}-2 a x_{1}^{2}\right)\right) .
$$

This matrix is of rank 1 unless (a) $x=0$ or (b) $x_{1}^{3}=2 a x_{2}^{2}$ and $x_{2}^{3}=2 a x_{1}^{2}$. In case (b) we may assume $x \neq 0$ and we also obtain $x_{1}^{9}=8 a^{3} x_{2}^{6}=32 a^{5} x_{1}^{4}$, that is, $x_{1}^{5}=(2 a)^{5}$, which holds if and only if $x_{1}=2 a$. In turn this implies $x_{2}=2 a$, but $g(2 a, 2 a)=64 a^{5}-80 a^{5}=-16 a^{5}<0$; in other words, $(2 a, 2 a) \notin F$. It follows that g is submersive at every point of $F \backslash\{0\}$. The desired conclusion follows from the Submersion Theorem 4.5.2.(ii).
(ii) We eliminate x_{2} from the equations $g(x)=0$ and $x_{2}=t x_{1}$, for fixed $t \in \mathbb{R}$. This leads to $\left(1+t^{5}\right) x_{1}^{5}=5 a t^{2} x_{1}^{4}$, with solutions $x_{1}=0$ (as was to be expected) or $x_{1}=\frac{5 a t^{2}}{1+t^{5}}$; and the desired formula for ϕ holds.
(iii) The formula for ϕ^{\prime} is a consequence of

$$
\phi^{\prime}(t)=\frac{5 a}{\left(1+t^{5}\right)^{2}}\binom{2 t\left(1+t^{5}\right)-t^{2} 5 t^{4}}{3 t^{2}\left(1+t^{5}\right)-t^{3} 5 t^{4}}=\frac{5 a t}{\left(1+t^{5}\right)^{2}}\binom{2+2 t^{5}-5 t^{5}}{t\left(3+3 t^{5}-5 t^{5}\right)} .
$$

If $t \neq 0$, then the assumption $\phi^{\prime}(t)=0$ implies $2-3 t^{5}=0$ and $3-2 t^{5}=0$. This gives $9 t^{5}=6=4 t^{5}$, that is $5 t^{5}=0$, and so arrived at a contradiction. Therefore $\phi^{\prime}(t) \neq 0$ if $t \neq 0$; hence $\phi^{\prime}(t)$ is of rank 1 , which proves that ϕ is everywhere immersive except at 0 .
(iv) F has self-intersection at 0 as follows from $\lim _{t \rightarrow \pm \infty} \phi(t)=0=\phi(0)$. Indeed, $\tilde{\phi}: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}^{2}$ with $\tilde{\phi}(u)=\phi\left(\frac{1}{u}\right)$ also defines a parametrization of F. Now $\phi(t)$ approaches 0 in a vertical direction as $t \downarrow 0$, while $\tilde{\phi}(u)$ approaches 0 in a horizontal direction as $u \downarrow 0$.
(v) Select $t_{0}>0$ sufficiently small, that is, suppose $2-3 t_{0}^{5}>0$ and $3-2 t_{0}^{5}>0$. For t running from -1 to t_{0}, the sign of the first component $t\left(2-3 t^{5}\right)$ of $\phi^{\prime}(t)$ changes from negative to positive at $t=0$, whereas the sign of the second component $t^{2}\left(3-2 t^{5}\right)$ remains nonnegative and vanishes for $t=0$ only. This behavior of ϕ^{\prime} near 0 is characteristic for a vertical cusp.

[^0]: ${ }^{1}$ Deze uitwerkingen zijn met de grootste zorg gemaakt. In geval van fouten kan de $\mathcal{T}_{\mathcal{B}} \mathcal{C}$ niet verantwoordelijk worden gesteld, maar wordt zij wel graag op de hoogte gesteld: tbc@a-eskwadraat.nl

