Dit tentamen is in elektronische vorm beschikbaar gemaakt door de \mathcal{BC} van A-Eskwadraat. A-Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten in dit tentamen.

TWEEDE DEELTENTAMEN WISB 212

Analyse in Meer Variabelen

03-07-2007 14-17 uur

- Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzijden.
- De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien het u niet lukt een bepaald onderdeel te maken en ga gewoon door.
- Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine **NIET** worden gebruikt.
- De twee vraagstukken tellen ieder voor de helft van het totaalcijfer.
- Het tentamen telt VIER bladzijden.

Exercise 0.1 (Adjoints, vector calculus and quaternions). Write C for the linear space $C_c^{\infty}(\mathbf{R}^3)$ of C^{∞} functions on \mathbf{R}^3 with compact support and introduce the usual inner product on C by $\langle f, g \rangle_C = \int_{\mathbf{R}^3} f(x)g(x)\,dx$, for f and $g \in C$. Consider the linear operator $D_j: C \to C$ of partial differentiation with respect to the j-th variable, for $1 \le j \le 3$.

(i) Prove that D_j is anti-adjoint with respect to the inner product on C, that is,

$$\langle D_i f, g \rangle_C = -\langle f, D_i g \rangle_C.$$

Denote by V the linear space of C^{∞} vector fields on \mathbf{R}^3 with compact support and introduce an inner product on V by $\langle v, w \rangle_V = \int_{\mathbf{R}^3} \langle v(x), w(x) \rangle \, dx$, for v and $w \in V$. Here the inner product at the right-hand side is the usual inner product of vectors in \mathbf{R}^3 . Furthermore, consider the linear operators $\operatorname{grad}: C \to V$ and $\operatorname{div}: V \to C$.

(ii) For $f \in C$ and $v \in V$, verify the following identity of functions in C:

$$\operatorname{div}(f v) = \langle \operatorname{grad} f, v \rangle + f \operatorname{div} v.$$

Use this to prove

$$\langle \operatorname{grad} f, v \rangle_V = -\langle f, \operatorname{div} v \rangle_C.$$

Conclude that $-\operatorname{div}:V\to C$ is the adjoint operator of grad $:C\to V$.

(iii) For v and w in V, prove the following identity of functions in C:

$$\operatorname{div}(v \times w) = \langle \operatorname{curl} v, w \rangle - \langle v, \operatorname{curl} w \rangle.$$

Hint: At the left-hand side the operator D_1 only occurs in the term $D_1(v_2w_3 - v_3w_2)$ and apply Leibniz' rule. Next determine the occurrence of D_1 at the right-hand side.

(iv) Deduce from part (iii) that

$$\langle \operatorname{curl} v, w \rangle_{V} = \langle v, \operatorname{curl} w \rangle_{V}.$$

In other words, the linear operator curl : $V \rightarrow V$ is self-adjoint.

Now consider the following matrix of differentiations acting on mappings $(egin{array}{c} v \\ f \end{array}): \mathbf{R}^3 \to \mathbf{R}^4:$

$$M = \begin{pmatrix} \text{curl grad} \\ -\text{div } 0 \end{pmatrix} = \begin{pmatrix} 0 & -D_3 & D_2 & D_1 \\ D_3 & 0 & -D_1 & D_2 \\ -D_2 & D_1 & 0 & D_3 \\ -D_1 & -D_2 & -D_3 & 0 \end{pmatrix}.$$

The preceding results (in particular, part (i)) imply that M is a symmetric matrix, which **in this context** must be phrased as $M^t = -M$ (when "truly" transposing the matrix we also have to take the transpose of its coefficients).

(v) Verify that $-M^2$ equals Gram's matrix associated to M, that is, the matrix containing the inner products of the column vectors of M. Deduce $M^2 = -\Delta E$, where Δ is the Laplacian and E the 4×4 identity matrix. Derive, for $f\in C$ and $v\in V$

$$\operatorname{curl} \operatorname{grad} f = 0, \quad \operatorname{div} \operatorname{curl} v = 0, \quad \operatorname{curl} (\operatorname{curl} v) = \operatorname{grad} (\operatorname{div} v) - \Delta v,$$

where in the third identity the Laplacian Δ acts by components on v. Finally, show how to derive the second identity from the first.

Background. We may write $M=D_1I+D_2J+D_3K$, where I,J and $K\in {\rm Mat}(4,{\bf R})$ satisfy $I^2=J^2=K^2=IJK=-E$. As a consequence IJ=-JI=K. Phrased differently, the linear space over ${\bf R}$ spanned by E,I,J,K provided with these rules of multiplication forms the noncommutative field ${\bf H}$ of the *quaternions*. In addition, analogously to the situation in dimension 1 where $(i\frac{d}{dx})^2=-\frac{d^2}{dx^2}$, we have decomposed the Laplacian on ${\bf R}^3$ in a product of matrix-valued linear factors:

$$\left(\frac{\partial}{\partial x_1}I + \frac{\partial}{\partial x_2}J + \frac{\partial}{\partial x_3}K\right)^2 = -\left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}\right)E.$$

Exercise 0.2 (Left-invariant integration on $Mat(n, \mathbf{R})$). As usual, we write $C_0(\mathbf{R}^n)$ for the linear space of continuous functions $f: \mathbf{R}^n \to \mathbf{R}$ having bounded support. Furthermore, we identify the linear space $Mat(n, \mathbf{R})$ of $n \times n$ matrices over \mathbf{R} with \mathbf{R}^{n^2} ; in this way, by using n^2 -dimensional integration, we assign a meaning to

$$\int_{\mathrm{Mat}(n,\mathbf{R})} f(X) dX \qquad (f \in C_0(\mathrm{Mat}(n,\mathbf{R}))).$$

(i) In particular, suppose n=2 and consider the subgroup

$$\mathbf{SO}(2,\mathbf{R}) = \left\{ \left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array} \right) \in \mathrm{Mat}(2,\mathbf{R}) \, \middle| \, -\pi < \alpha \le \pi \right\}$$

of all orthogonal matrices in $\mathrm{Mat}(2,\mathbf{R})$ of determinant 1. Without proof one may use that ϕ is a C^∞ embedding if we define

$$\phi:]-\pi, \pi[\to \mathbf{R}^4$$
 by $\phi(\alpha) = (\cos \alpha, \sin \alpha, -\sin \alpha, \cos \alpha).$

Now prove $\operatorname{vol}_1(\mathbf{SO}(2,\mathbf{R})) = 2\pi\sqrt{2}$.

(ii) Prove, for any $f \in C_0(\mathbf{R})$ with $0 \notin \text{supp } f$ and any $0 \neq y \in \mathbf{R}$,

$$\int_{\mathbf{R}} \frac{f(y\,x)}{x} \, dx = \int_{\mathbf{R}} \frac{f(x)}{x} \, dx.$$

We now generalize the identity in part (ii) to $Mat(n, \mathbf{R})$. We shall prove, for every $f \in C_0(Mat(n, \mathbf{R}))$ with supp $f \subset \mathbf{GL}(n, \mathbf{R})$ (= the group of invertible matrices in $Mat(n, \mathbf{R})$) and $Y \in \mathbf{GL}(n, \mathbf{R})$,

$$(\star) \qquad \int_{\operatorname{Mat}(n,\mathbf{R})} \frac{f(YX)}{|\det X|^n} \, dX = \int_{\operatorname{Mat}(n,\mathbf{R})} \frac{f(X)}{|\det X|^n} \, dX.$$

Given $Y \in \mathbf{GL}(n, \mathbf{R})$, define

$$\Phi_Y : \operatorname{Mat}(n, \mathbf{R}) \to \operatorname{Mat}(n, \mathbf{R})$$
 by $\Phi_Y(X) = Y X$.

(iii) Show that Φ_Y is a C^{∞} diffeomorphism satisfying $D\Phi_Y(X) = \Phi_Y$, for all $X \in \operatorname{Mat}(n, \mathbf{R})$.

Denote by e_1, \ldots, e_n the standard basis (column) vectors in \mathbb{R}^n , then a basis for $\mathrm{Mat}(n, \mathbb{R})$ is formed by the matrices

$$E_{i,j} = (0 \cdots 0 \ e_i \ 0 \cdots 0) \qquad (1 \le i, j \le n),$$

where e_i occurs in the j-th column. The ordering is lexicographic, but first with respect to j and then to i. In the case of n = 2 we thus obtain, in the following order:

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- (iv) Verify $\Phi_Y(E_{i,j}) = (0 \dots 0 \ Ye_i \ 0 \dots 0)$. Deduce that the matrix of Φ_Y with respect to the $(E_{i,j})$ is given in block diagonal form with a copy of Y in each block and that $\det \Phi_Y = (\det Y)^n$. **Hint:** First consider explicitly the case of n=2, where the matrix of Φ_Y belongs to $\operatorname{Mat}(4,\mathbf{R})$. Then treat the general case.
- (v) Prove $\Phi_Y(\mathbf{GL}(n, \mathbf{R})) \subset \mathbf{GL}(n, \mathbf{R})$. Now show the validity of (\star) above by applying parts (iii) and (iv).
- (vi) Select $Y \in \mathbf{GL}(n, \mathbf{R})$ satisfying $\det Y = -1$ and set $f(X) = \det X$. With these data (\star) implies -1 = 1. Explain!

Solution of Exercise 0.1

- (i) Because f and g are of compact support, it is possible to select an open ball $\Omega \subset \mathbf{R}^n$ containing $\mathrm{supp}(f)$ and $\mathrm{supp}(g)$; in particular, f and g vanish along $\partial\Omega$. The formula then follows from Corollary 7.6.2 because the integral over $\partial\Omega$ vanishes.
- (ii) On account of Leibniz' rule we have

$$\operatorname{div}(f \, v) = \sum_{1 \le j \le 3} D_j(f \, v_j) = \sum_{1 \le j \le 3} (D_j f) \, v_j + \sum_{1 \le j \le 3} f \, D_j v_j = \langle \operatorname{grad} f, \, v \, \rangle + f \operatorname{div} v.$$

Next integrate this identity over \mathbf{R}^3 and notice that Gauss' Divergence Theorem 7.8.5 implies that the integral of the left-hand side equals $\int_{\partial\Omega} f(y) \langle v(y), v(y) \rangle dy = 0$, for the same reasons as in part (i). The final conclusion is a consequence of the definition of the adjoint in Section 2.1.

- (iii) At the left-hand side D_1 occurs in the term $v_2D_1w_3 + w_3D_1v_2 v_3D_1w_2 w_2D_1v_3$, while at the right-hand side it occurs in $-w_2D_1v_3 + w_3D_1v_2 + v_2D_1w_3 v_3D_1w_2$, which is a rearrangement of the former expression. Taking the indices modulo 3 one obtains analogous results for D_2 and D_3 by means of cyclic permutation of the indices.
- (iv) The desired results follow in the same manner as in part (ii).
- (v) First note that $-M^2=M^tM$ where the right-hand side is Gram's matrix according to Section 2.1. On the basis of the symmetry of Gram's matrix and $D_iD_j=D_jD_i$, one has to perform 10 trivial mental calculations to establish that $\langle\,M_i,\,M_j\,\rangle=\delta_{ij}\,\Delta$, for $1\leq i,j\leq 3$. This leads to $M^2=-\Delta E$. One finds on the one hand

$$M^2 = \left(\begin{array}{cc} \operatorname{curl} & \operatorname{grad} \\ -\operatorname{div} & 0 \end{array} \right) \left(\begin{array}{cc} \operatorname{curl} & \operatorname{grad} \\ -\operatorname{div} & 0 \end{array} \right) = \left(\begin{array}{cc} \operatorname{curl} \circ \operatorname{curl} - \operatorname{grad} \circ \operatorname{div} & \operatorname{curl} \circ \operatorname{grad} \\ -\operatorname{div} \circ \operatorname{curl} & -\operatorname{div} \circ \operatorname{grad} \end{array} \right),$$

while on the other hand it equals $(-\Delta)E$. Comparison of the matrix coefficients leads to the desired conclusions. Observe that in addition one recovers the definition $\Delta = \operatorname{div} \circ \operatorname{grad}$. The second identity follows from the first by taking the transpose.

Solution of Exercise 0.2

(i) We have

$$||D\phi(\alpha)|| = ||(-\sin\alpha, \cos\alpha, -\cos\alpha, -\sin\alpha)|| = \sqrt{2}.$$

Therefore integration of the constant function 1 over the submanifold $SO(2, \mathbf{R})$ with respect to the Euclidean density gives $\int_{-\pi}^{\pi} \sqrt{2} d\alpha = 2\pi\sqrt{2}$.

- (ii) The formula is a direct consequence of the substitution $x \mapsto yx$ in the right-hand side of the given formula.
- (iii) The coefficients of the product matrix YX are given by polynomial functions in the coefficients of Y and X, therefore Φ_Y is a C^{∞} mapping. As $Y \in \mathbf{GL}(n, \mathbf{R})$, the mapping Φ_Y is invertible, with $\Phi_{Y^{-1}}$ as its inverse; and this shows that Φ_Y is a C^{∞} diffeomorphism. The formula for $D\Phi_Y$ follows from Example 2.2.5, because Φ_Y is a linear mapping.
- (iv) On account of the properties of matrix multiplication we have

$$\Phi_Y(E_{i,j}) = Y E_{i,j} = Y (0 \cdots 0 e_i 0 \cdots 0) = (Y0 \cdots Y0 Y e_i Y0 \cdots Y0)$$

= $(0 \cdots 0 Y e_i 0 \cdots 0).$

The matrix of Φ_Y is obtained by successively applying Φ_Y to all the basis vectors in $\mathrm{Mat}(n,\mathbf{R})$. Since the resulting $n^2 \times n^2$ matrix contains n identical blocks along the diagonal, the formula for $\det \Phi_Y$ follows.

- (v) The inclusion is a consequence of the multiplicative property of the determinant. Application of the Change of Variables Theorem 6.6.1 with $\Psi = \Phi_Y$ leads to (*), because $|\det D\Phi_Y(X)| = |\det \Phi_Y| = |\det Y|^n$, for all $X \in \operatorname{Mat}(n, \mathbf{R})$.
- (vi) In this case, the function f has no bounded support. Actually, the integral on the right-hand side of (*) is divergent.