TWEEDE DEELTENTAMEN WISB 212

Analyse in Meer Variabelen

03-07-2007 14-17 uur

- Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzijden.
- De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien het u niet lukt een bepaald onderdeel te maken en ga gewoon door.
- Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden gebruikt.
- De twee vraagstukken tellen ieder voor de helft van het totaalcijfer.
- Het tentamen telt VIER bladzijden.

Exercise 0.1 (Adjoints, vector calculus and quaternions). Write C for the linear space $C_{c}^{\infty}\left(\mathbf{R}^{3}\right)$ of C^{∞} functions on \mathbf{R}^{3} with compact support and introduce the usual inner product on C by $\langle f, g\rangle_{C}=$ $\int_{\mathbf{R}^{3}} f(x) g(x) d x$, for f and $g \in C$. Consider the linear operator $D_{j}: C \rightarrow C$ of partial differentiation with respect to the j-th variable, for $1 \leq j \leq 3$.
(i) Prove that D_{j} is anti-adjoint with respect to the inner product on C, that is,

$$
\left\langle D_{j} f, g\right\rangle_{C}=-\left\langle f, D_{j} g\right\rangle_{C}
$$

Denote by V the linear space of C^{∞} vector fields on \mathbf{R}^{3} with compact support and introduce an inner product on V by $\langle v, w\rangle_{V}=\int_{\mathbf{R}^{3}}\langle v(x), w(x)\rangle d x$, for v and $w \in V$. Here the inner product at the right-hand side is the usual inner product of vectors in \mathbf{R}^{3}. Furthermore, consider the linear operators grad : $C \rightarrow V$ and div $: V \rightarrow C$.
(ii) For $f \in C$ and $v \in V$, verify the following identity of functions in C :

$$
\operatorname{div}(f v)=\langle\operatorname{grad} f, v\rangle+f \operatorname{div} v
$$

Use this to prove

$$
\langle\operatorname{grad} f, v\rangle_{V}=-\langle f, \operatorname{div} v\rangle_{C}
$$

Conclude that - div : $V \rightarrow C$ is the adjoint operator of grad : $C \rightarrow V$.
(iii) For v and w in V, prove the following identity of functions in C :

$$
\operatorname{div}(v \times w)=\langle\operatorname{curl} v, w\rangle-\langle v, \operatorname{curl} w\rangle
$$

Hint: At the left-hand side the operator D_{1} only occurs in the term $D_{1}\left(v_{2} w_{3}-v_{3} w_{2}\right)$ and apply Leibniz' rule. Next determine the occurrence of D_{1} at the right-hand side.
(iv) Deduce from part (iii) that

$$
\langle\operatorname{curl} v, w\rangle_{V}=\langle v, \operatorname{curl} w\rangle_{V} .
$$

In other words, the linear operator curl : V $\rightarrow V$ is self-adjoint.
Now consider the following matrix of differentiations acting on mappings $\binom{v}{f}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}$:

$$
M=\left(\begin{array}{rl}
\text { curl } & \text { grad } \\
-\operatorname{div} & 0
\end{array}\right)=\left(\begin{array}{rrrr}
0 & -D_{3} & D_{2} & D_{1} \\
D_{3} & 0 & -D_{1} & D_{2} \\
-D_{2} & D_{1} & 0 & D_{3} \\
-D_{1} & -D_{2} & -D_{3} & 0
\end{array}\right)
$$

The preceding results (in particular, part (i)) imply that M is a symmetric matrix, which in this context must be phrased as $M^{t}=-M$ (when "truly" transposing the matrix we also have to take the transpose of its coefficients).
(v) Verify that $-M^{2}$ equals Gram's matrix associated to M, that is, the matrix containing the inner products of the column vectors of M. Deduce $M^{2}=-\Delta E$, where Δ is the Laplacian and E the 4×4 identity matrix. Derive, for $f \in C$ and $v \in V$

$$
\operatorname{curl} \operatorname{grad} f=0, \quad \operatorname{div} \operatorname{curl} v=0, \quad \operatorname{curl}(\operatorname{curl} v)=\operatorname{grad}(\operatorname{div} v)-\Delta v,
$$

where in the third identity the Laplacian Δ acts by components on v. Finally, show how to derive the second identity from the first.

Background. We may write $M=D_{1} I+D_{2} J+D_{3} K$, where I, J and $K \in \operatorname{Mat}(4, \mathbf{R})$ satisfy $I^{2}=J^{2}=K^{2}=I J K=-E$. As a consequence $I J=-J I=K$. Phrased differently, the linear space over \mathbf{R} spanned by E, I, J, K provided with these rules of multiplication forms the noncommutative field \mathbf{H} of the quaternions. In addition, analogously to the situation in dimension 1 where $\left(i \frac{d}{d x}\right)^{2}=-\frac{d^{2}}{d x^{2}}$, we have decomposed the Laplacian on \mathbf{R}^{3} in a product of matrix-valued linear factors:

$$
\left(\frac{\partial}{\partial x_{1}} I+\frac{\partial}{\partial x_{2}} J+\frac{\partial}{\partial x_{3}} K\right)^{2}=-\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right) E
$$

Exercise 0.2 (Left-invariant integration on $\operatorname{Mat}(n, \mathbf{R})$). As usual, we write $C_{0}\left(\mathbf{R}^{n}\right)$ for the linear space of continuous functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ having bounded support. Furthermore, we identify the linear space $\operatorname{Mat}(n, \mathbf{R})$ of $n \times n$ matrices over \mathbf{R} with $\mathbf{R}^{n^{2}}$; in this way, by using n^{2}-dimensional integration, we assign a meaning to

$$
\int_{\operatorname{Mat}(n, \mathbf{R})} f(X) d X \quad\left(f \in C_{0}(\operatorname{Mat}(n, \mathbf{R}))\right)
$$

(i) In particular, suppose $n=2$ and consider the subgroup

$$
\mathbf{S O}(2, \mathbf{R})=\left\{\left.\left(\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \in \operatorname{Mat}(2, \mathbf{R}) \right\rvert\,-\pi<\alpha \leq \pi\right\}
$$

of all orthogonal matrices in $\operatorname{Mat}(2, \mathbf{R})$ of determinant 1. Without proof one may use that ϕ is a C^{∞} embedding if we define

$$
\phi:]-\pi, \pi\left[\rightarrow \mathbf{R}^{4} \quad \text { by } \quad \phi(\alpha)=(\cos \alpha, \sin \alpha,-\sin \alpha, \cos \alpha) .\right.
$$

Now prove $\operatorname{vol}_{1}(\mathbf{S O}(2, \mathbf{R}))=2 \pi \sqrt{2}$.
(ii) Prove, for any $f \in C_{0}(\mathbf{R})$ with $0 \notin \operatorname{supp} f$ and any $0 \neq y \in \mathbf{R}$,

$$
\int_{\mathbf{R}} \frac{f(y x)}{x} d x=\int_{\mathbf{R}} \frac{f(x)}{x} d x .
$$

We now generalize the identity in part (ii) to $\operatorname{Mat}(n, \mathbf{R})$. We shall prove, for every $f \in C_{0}(\operatorname{Mat}(n, \mathbf{R}))$ with supp $f \subset \mathbf{G L}(n, \mathbf{R})$ (= the group of invertible matrices in $\operatorname{Mat}(n, \mathbf{R})$) and $Y \in \mathbf{G L}(n, \mathbf{R})$,

$$
\begin{equation*}
\int_{\operatorname{Mat}(n, \mathbf{R})} \frac{f(Y X)}{|\operatorname{det} X|^{n}} d X=\int_{\operatorname{Mat}(n, \mathbf{R})} \frac{f(X)}{|\operatorname{det} X|^{n}} d X . \tag{*}
\end{equation*}
$$

Given $Y \in \mathbf{G L}(n, \mathbf{R})$, define

$$
\Phi_{Y}: \operatorname{Mat}(n, \mathbf{R}) \rightarrow \operatorname{Mat}(n, \mathbf{R}) \quad \text { by } \quad \Phi_{Y}(X)=Y X
$$

(iii) Show that Φ_{Y} is a C^{∞} diffeomorphism satisfying $D \Phi_{Y}(X)=\Phi_{Y}$, for all $X \in \operatorname{Mat}(n, \mathbf{R})$.

Denote by e_{1}, \ldots, e_{n} the standard basis (column) vectors in \mathbf{R}^{n}, then a basis for $\operatorname{Mat}(n, \mathbf{R})$ is formed by the matrices

$$
E_{i, j}=\left(0 \cdots 0 e_{i} 0 \cdots 0\right) \quad(1 \leq i, j \leq n),
$$

where e_{i} occurs in the j-th column. The ordering is lexicographic, but first with respect to j and then to i. In the case of $n=2$ we thus obtain, in the following order:

$$
E_{1,1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), \quad E_{2,1}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad E_{1,2}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad E_{2,2}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

(iv) Verify $\Phi_{Y}\left(E_{i, j}\right)=\left(0 \ldots 0 Y e_{i} 0 \ldots 0\right)$. Deduce that the matrix of Φ_{Y} with respect to the $\left(E_{i, j}\right)$ is given in block diagonal form with a copy of Y in each block and that $\operatorname{det} \Phi_{Y}=(\operatorname{det} Y)^{n}$.
Hint: First consider explicitly the case of $n=2$, where the matrix of Φ_{Y} belongs to $\operatorname{Mat}(4, \mathbf{R})$. Then treat the general case.
(v) Prove $\Phi_{Y}(\mathbf{G L}(n, \mathbf{R})) \subset \mathbf{G L}(n, \mathbf{R})$. Now show the validity of (\star) above by applying parts (iii) and (iv).
(vi) Select $Y \in \mathbf{G L}(n, \mathbf{R})$ satisfying $\operatorname{det} Y=-1$ and set $f(X)=\operatorname{det} X$. With these data (\star) implies $-1=1$. Explain!

Solution of Exercise 0.1

(i) Because f and g are of compact support, it is possible to select an open ball $\Omega \subset \mathbf{R}^{n}$ containing $\operatorname{supp}(f)$ and $\operatorname{supp}(g)$; in particular, f and g vanish along $\partial \Omega$. The formula then follows from Corollary 7.6 .2 because the integral over $\partial \Omega$ vanishes.
(ii) On account of Leibniz' rule we have

$$
\operatorname{div}(f v)=\sum_{1 \leq j \leq 3} D_{j}\left(f v_{j}\right)=\sum_{1 \leq j \leq 3}\left(D_{j} f\right) v_{j}+\sum_{1 \leq j \leq 3} f D_{j} v_{j}=\langle\operatorname{grad} f, v\rangle+f \operatorname{div} v
$$

Next integrate this identity over \mathbf{R}^{3} and notice that Gauss' Divergence Theorem 7.8.5 implies that the integral of the left-hand side equals $\int_{\partial \Omega} f(y)\langle v(y), \nu(y)\rangle d y=0$, for the same reasons as in part (i). The final conclusion is a consequence of the definition of the adjoint in Section 2.1.
(iii) At the left-hand side D_{1} occurs in the term $v_{2} D_{1} w_{3}+w_{3} D_{1} v_{2}-v_{3} D_{1} w_{2}-w_{2} D_{1} v_{3}$, while at the right-hand side it occurs in $-w_{2} D_{1} v_{3}+w_{3} D_{1} v_{2}+v_{2} D_{1} w_{3}-v_{3} D_{1} w_{2}$, which is a rearrangement of the former expression. Taking the indices modulo 3 one obtains analogous results for D_{2} and D_{3} by means of cyclic permutation of the indices.
(iv) The desired results follow in the same manner as in part (ii).
(v) First note that $-M^{2}=M^{t} M$ where the right-hand side is Gram's matrix according to Section 2.1. On the basis of the symmetry of Gram's matrix and $D_{i} D_{j}=D_{j} D_{i}$, one has to perform 10 trivial mental calculations to establish that $\left\langle M_{i}, M_{j}\right\rangle=\delta_{i j} \Delta$, for $1 \leq i, j \leq 3$. This leads to $M^{2}=-\Delta E$. One finds on the one hand

$$
M^{2}=\left(\begin{array}{rl}
\text { curl } & \text { grad } \\
-\operatorname{div} & 0
\end{array}\right)\left(\begin{array}{rl}
\text { curl } & \text { grad } \\
-\operatorname{div} & 0
\end{array}\right)=\left(\begin{array}{rr}
\text { curl } \circ \text { curl }-\operatorname{grad} \circ \text { div } & \text { curl } \circ \text { grad } \\
-\operatorname{div} \circ \operatorname{curl} & -\operatorname{div} \circ \operatorname{grad}
\end{array}\right),
$$

while on the other hand it equals $(-\Delta) E$. Comparison of the matrix coefficients leads to the desired conclusions. Observe that in addition one recovers the definition $\Delta=\operatorname{div} \circ \mathrm{grad}$. The second identity follows from the first by taking the transpose.

Solution of Exercise 0.2

(i) We have

$$
\|D \phi(\alpha)\|=\|(-\sin \alpha, \cos \alpha,-\cos \alpha,-\sin \alpha)\|=\sqrt{2}
$$

Therefore integration of the constant function 1 over the submanifold $\mathbf{S O}(2, \mathbf{R})$ with respect to the Euclidean density gives $\int_{-\pi}^{\pi} \sqrt{2} d \alpha=2 \pi \sqrt{2}$.
(ii) The formula is a direct consequence of the substitution $x \mapsto y x$ in the right-hand side of the given formula.
(iii) The coefficients of the product matrix $Y X$ are given by polynomial functions in the coefficients of Y and X, therefore Φ_{Y} is a C^{∞} mapping. As $Y \in \mathbf{G L}(n, \mathbf{R})$, the mapping Φ_{Y} is invertible, with $\Phi_{Y^{-1}}$ as its inverse; and this shows that Φ_{Y} is a C^{∞} diffeomorphism. The formula for $D \Phi_{Y}$ follows from Example 2.2.5, because Φ_{Y} is a linear mapping.
(iv) On account of the properties of matrix multiplication we have

$$
\begin{aligned}
\Phi_{Y}\left(E_{i, j}\right) & =Y E_{i, j}=Y\left(0 \cdots 0 e_{i} 0 \cdots 0\right)=\left(Y 0 \cdots Y 0 Y e_{i} Y 0 \cdots Y 0\right) \\
& =\left(0 \cdots 0 Y e_{i} 0 \cdots 0\right)
\end{aligned}
$$

The matrix of Φ_{Y} is obtained by successively applying Φ_{Y} to all the basis vectors in $\operatorname{Mat}(n, \mathbf{R})$. Since the resulting $n^{2} \times n^{2}$ matrix contains n identical blocks along the diagonal, the formula for $\operatorname{det} \Phi_{Y}$ follows.
(v) The inclusion is a consequence of the multiplicative property of the determinant. Application of the Change of Variables Theorem 6.6 .1 with $\Psi=\Phi_{Y}$ leads to $(*)$, because $\left|\operatorname{det} D \Phi_{Y}(X)\right|=$ $\left|\operatorname{det} \Phi_{Y}\right|=|\operatorname{det} Y|^{n}$, for all $X \in \operatorname{Mat}(n, \mathbf{R})$.
(vi) In this case, the function f has no bounded support. Actually, the integral on the right-hand side of $(*)$ is divergent.

