Group theory – Exam 2

Notes:

- 1. Write your name and student number ** clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are **not** allowed to consult any text book, class notes, colleagues, calculators, computers etc.
- 5. If you are not sure about some definition of notation you encounter in the exam, please ask.
- 6. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

1) Let H be a subgroup of a group G and K be a normal subgroup of G. Show that $H \cap K$ is a normal subgroup of H.

2) For each list of groups below, decide which groups are isomorphic, if any:

- a) $D_9 \times \mathbb{Z}_2$, D_{18} and $D_6 \times \mathbb{Z}_3$, .
- b) $D_{12} \times \mathbb{Z}_2$, D_{24} , $D_8 \times D_3$ and $S_4 \times \mathbb{Z}_2$.

3) Let G and H be groups show that $G \cong G \times \{e\} \subset G \times H$ is a normal subgroup of $G \times H$ and that the quotient $G \times H/G$ is isomorphic to H.

- 4) Classify all groups of order $7^2 \cdot 17^2$.
- 5) Given a group G, we define a sequence of groups by induction setting $G_0 = G$ and $G_n = G_{n-1}/Z_{G_{n-1}}$.
 - a) Show that if G is Abelian, then $G_i = \{e\}$ for i > 0;
 - b) Show that if G is simple and not Abelian, then $G_i = G$ for all i;
 - c) Compute this sequence for A_5 , \mathbb{Z}_{10} , D_{10} and D_8 .