
Group theory – answers
November 7, 2016

Clearly write your name and student number above each page you hand in. A
calculator, phone, books, notes, old exercises et cetera are not allowed. You may
use the results (not the exercises) in Armstrong’s book to answer the questions
unless a result is explicitly asked for. Finally: recall that a group G is called
simple if the only normal subgroups of G are e ∈ G and G itself.
Total points: 90

Statistics: participants 87; avarage grade 6.1; passed: 71%; failed: 29%.

Exercise 1 2 3 4 5 total
Max score 16 42 16 8 8 90
Average score 13.28 22.57 11.71 2.25 1.93 51.75

The following includes take home exercises, is positive.
Possible grades 1 2 3 4 5 6/6.5 7/7.5 8/8.5 9/9.5 10
Grade distribution 3 0 5 6 12 19 33 6 3 0

Exercise 1: Permutation groups and dihedral groups

1. (4pt) Let σ = (123 . . . 100) be an element of S100. Write σ4 as a product of
disjoint cykels. Answer: σ4 = (159 . . . 97)(2610 . . . 98)(3711 . . . 99)(4812 . . . 100).

2. (4pt) Is σ3 an element of A100? Motivate your answer. Answer: No. σ is
a 100-cykel and hence it is odd. Therefore σ3 is a product of 3 odd cycles,
which is odd again. A100 is group group of even permutations so it does
not contain σ3.

3. (4pt) LetD37 be the dihedral group generated by the elements s and r with
s2 = e, r37 = e and srs = r−1. Determine all elements in the conjugacy
class of s. Motivate your answer. Answer: These are srk, 0 ≤ k < 37.
You can see this as rlsr−l = sr−2l, 0 ≤ l < 37 gives all these elements.
Also (srl)s(srl)−1 = sr2l gives all these elements.

4. (4pt) Prove that D37 is isomorphic to a subgroup of Dk if and only if 37
divides k. Answer: The only if part follows from Lagrange’s theorem.
For the if part, write Dk =< s, r > with s2 = e, rk = e, srs = r−1. Then
< s, rk/37 > is a subgroup isomorphic to D37.

Exercise 2: True or false?

For each of the following statements: give a proof or a counterexample.
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1. (6pt) Let G be a group. Let x, y ∈ G be elements of finite order. Then xy
has finite order.Answer 1: False. In D∞ we have x = sr and y = sr2 as a
counterexample. Answer 2 (suggested by one student): Consider Z2∗Z2,
the group of all finite sequences of 0’s and 1’s in which no 2 consecutive
0’s and 1’s occur. Multiplication is concatenation with the rule that all
occurrences of 11 and 00 cancel to the empty word. The empty word is
the identity. Then 0 has order 2, as 00 = e. Similarly 1 has order 2. But
01 has infinite order as 010101. . . 01 is never the identity.

2. (6pt) D100 contains a subgroup of index 3. Answer: False. If H < D100

then the index is given by |D100|/|H|. As 3 does not divide |D100| = 200
this cannot be true.

3. (6pt) Let G be an abelian group. The conjugacy classes of G contain only
1 element. Answer: True. G is abelian iff ∀g, s ∈ G : gsg−1 = s iff
∀s ∈ G the conjugacy class of s contains 1 element.

4. (6pt) Let H C G. Then G is isomorphic to G/H ×H. Answer: Wrong
H :=< r > is normal in Dk as it is of index 2. Moreover Dk/H ' Z2.
But Dk is not abelian whereas G/K ×H ' Z2 ×H is. So The latter two
groups cannot be isomorphic. Remark: The only sensible interpretation
of G/H ×H is (G/H)×H and not G/(H ×H).

5. (6pt) Let G be an abelian group and let H C G be the subgroup of G
consisting of all elements of finite order in G. Assume that there exists an
element xH ∈ G/H unequal to eH (i.e. unequal to the identity of G/H).
Prove or give a counterexample: Then xH generates an infinite cyclic
subgroup of G/H. Answer: True. Suppose that xH has finite order, say
(xH)k = eH. So that xk ∈ H. Then xk has finite order (definition of H)
so there is an l with xkl = e. But then x ∈ H (definition of H) so that
xH is the identity. Contradiction. We proved that x does not have finite
order, hence it generates on infinite cyclic group.

6. (6pt) Let G be a group with |G| = 42. Let X be a set with |X| = 15.
There exists an action of G on X which is transitive. Answer: False.
The number of elements in an orbit must divide |G|. Transitive means
that there is only 1 orbit, but 42 does not divide 15.

7. (6pt) There exists a simple group of order 3·5·59. Answer: False. Take a
subgroup H of order 59 (Sylow theorem). The number of such subgroups
divides 3 · 5 and is 1 modulo 59. So there is only 1 subgroup of order 59.
Therefore for all g ∈ G we have gHg−1 = H. So H is normal in G. So G
is not simple.

Exercise 3: The counting theorem

(16pt) You want to color the faces of a plate with basis a regular hexagon in
two colors (say red and blue). Use the counting theorem to find the number
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of possible paintings. Two paintings are equal if one can be obtained from
the other through turning the plate. You may use the following figure from
Armstrongs book to motivate your answer. You may also use that the con-
jugacy classes of D6 =< s, r > with s2 = e, r6 = e, srs = r−1 are given by
{e}, {r, r5, }, {r2, r4}, {r3}, {s, sr2, sr4}, {sr, sr3, sr5}. Explicitly formulate the
counting theorem in your answer and show how it is applied. Also motivate
how you obtain the numbers in your computation. Answer: The number of
fixed points for the respective conjugacy classes is: 28, 23, 24, 25, 24, 25. We com-
pute then

1

12

(
28 × 1 + 23 × 2 + 24 × 2 + 25 × 1 + 24 × 3 + 25 × 3

)
=

480

12
= 40.

If you only counted the faces on the side the computation gets:

1

12

(
26 × 1 + 20 × 2 + 21 × 2 + 23 × 1 + 24 × 3 + 23 × 3

)
=

156

12
= 13.

Exercise 4: Distinguishing groups

(8pt) The groups D∞ and D∞×D∞ are both infinite. Show however that these
groups are not isomorphic. Answer 1: [D∞, D∞] is the group generated
by r2. So D∞/[D∞, D∞] has 4 elements. Let H = D∞ × D∞. Then
H/[H,H] has 42 elements. So the groups cannot be isomorphic because
they have non-isomorphic abelianizations. Answer 2: D∞×D∞ contains
a subgroup isomorphic to Z2 whereas D∞ does not. Answer 3: D∞×D∞
contains a subgroup isomorphic to Z2×Z2 and D∞ does not. Answer 4:
D∞ ×D∞ 2 elements of order 2 that commute and (after a little check)
one sees that D∞ does not.
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Exercise 5: Sylow theorems

(8pt) Show that every group of order 52 × 17 × 37 is abelian. Answer 1:
Let G be a group with order 52 × 17 × 37. Let H25, H17 and H37 be
Sylow subgroups corresponding to the primes 5, 17 and 37. The primes
are chosen in such a way that the Sylow theorems give us that there are
unique such subgroups H25, H17 and H37. Let a ∈ H25, b ∈ H17, c ∈ H37.
Then as aH17a

−1 = H17 we see that aba−1 ∈ H17. H17 is cyclic so,
say that aba−1 = bk. Then as a25 = e we see that for all l we get

b = a25lba−25l = bk
25l

. This can only happen if k25l is 1 modulo 17.
Therefore we may see that k and 17 are relatively prime. But if we choose
l such that 25l = 1 mod 16 we get that k25l = k mod 17 (see Armstrong
11.5). So modulo 17 there is only one choice for k, namely 1. This shows
that a and b commute. The same method shows that a and c commute.
So our three Sylow groups mutually commute. In Armstrong we proved
that there are only 2 groups of order 25, namely Z25 and Z5 × Z5 which
are abelian. The groups H17 and H37 are cyclic hence abelian. So we
conclude: H25, H17 and H37 are abelian groups that mutually commute
and generate G. So G is abelian.

Answer 2: (Largely the same) Let G be a group with order 52× 17× 37.
Let H25, H17 and H37 be Sylow subgroups corresponding to the primes 5,
17 and 37. The primes are chosen in such a way that the Sylow theorems
give us that there are unique such subgroups H25, H17 and H37 and hence
they are normal. Let a ∈ H25, b ∈ H17, c ∈ H37. Then as aH17a

−1 = H17

and bH25b
−1 = H25 we see that aba−1b−1 ∈ H17 ∩H25. From Lagrange’s

theorem we must have H17 ∩ H25 = {e}. So aba−1b−1 = e. So a and
b commute. The same argument shows that a and c commute and that
b and c commute. So our three Sylow groups mutually commute. In
Armstrong we proved that there are only 2 groups of order 25, namely
Z25 and Z5 × Z5 which are abelian. The groups H17 and H37 are cyclic
hence abelian. So we conclude: H25, H17 and H37 are abelian groups that
mutually commute and generate G. So G is abelian.
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