Inleiding Topologie Exam B (WISB-243) 29 Juni 2011

Excercise 1. Consider

$$
\begin{aligned}
& X_{1}=\left\{(x, y, z) \in \mathbb{R}^{3}:(z=0) \text { or }(x=y=0, z \geq 0)\right\} \\
& X_{2}=\left\{(x, y, z) \in \mathbb{R}^{3}:(z=0) \text { or }\left(x=0, y^{2}+z^{2}=1, z \geq 0\right)\right\} \\
& X_{3}=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(x^{2}+y^{2}+z^{2}=1\right) \text { or }\left(y=0, z=0, \frac{1}{2}<|x|<1\right)\right\}
\end{aligned}
$$

a) Show that X_{1}, X_{2}, X_{3} are locally compact (hint: try to use the basic properties of locally compact spaces; alternatively, you can try to find direct arguments on the pictures).(0.5 punt)
b) Show that the one-point compactifications of X_{1}, X_{2} and X_{3} are homeomorphic to each other. (1 punt)

Excercise 2. Given a polynomial $p \in \mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$, we denote \mathcal{R}_{p} the set of reminders modulo p. In other words,

$$
\mathcal{R}_{p}=\mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right] / R_{p}
$$

Where R_{p} is the equivalence relation on $\mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ given by

$$
R_{p}=\left\{\left(q_{1}, q_{2}\right): \exists q \in \mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right] \text { such that } q_{1}-q_{2}=p q\right\}
$$

We also denote by $\pi_{p}: \mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right] \longrightarrow \mathcal{R}_{p}$ the resulting quotient map. Show that

1. There is a unique algebra structure on \mathcal{R}_{p} (i.e. unique operations + , and multiplications by scalars, defines on \mathcal{R}_{p}) with the property that π_{p} is an morphism of algebras, i.e.

$$
\pi_{p}\left(q_{1}+q_{2}\right)=\pi\left(q_{1}\right)+\pi_{2}\left(q_{2}\right), \pi_{p}\left(q_{1} \cdot q_{2}\right)=\pi_{p}\left(q_{1}\right) \cdot \pi_{p}\left(q_{2}\right), \lambda \pi_{p}(q)=\pi_{p}(\lambda q)
$$

for all $q_{1}, q_{2} \in \mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right], \lambda \in \mathbb{R}$.
2. For $p=x_{0}^{2}+\ldots+x_{n}^{2}$ the spectrum of \mathcal{R}_{p} has only one point
3. For $p=x_{0}^{2}+\ldots+x_{n}^{2}-1$, the spectrum of \mathcal{R}_{p} is homeomorphic to S^{n}
4. What is the spectrum for $p=x_{0} x_{1} \ldots x_{n}$?

Excercise 3. Let X be the space of continuous maps $f:[0,1] \longrightarrow[0,1]$ with the property that $f(0)=f(1)$. We endow it with the sup-metric $d_{\text {sup }}$ and the induced topologie (recall that $\left.d_{\text {sup }}(f, g)=\sup \{|f(t)-g(t)|: t \in[0,1]\}\right)$. Prove that:

1. X is not bounded and complete.
2. X is not compact.

Excercise 4. Show that:

1. The product of two sequentially compact spaces is sequentially compact.
2. Deduce that the product of two compact metric space is a compact space.

Excercise 5. Show that the family of open intervals

$$
\mathcal{U}:=\{(q, q+1): q \in \mathbb{R}\}
$$

forms an open cover of \mathbb{R} which admits no finite sub-cover, but which admits a locally finite sub-cover. (1.5p)

Excercise 6. Prove that there is no continuous injective map $f: S^{1} \vee S^{1} \longrightarrow S^{1}$, where $S^{1} \vee S^{1}$ is a bouquet of two circles (two copies of S^{1}, tangent to each other).
(1.5 punt)

Note: the mark for this exam is the minimum between 10 and the number of points that you score (in total, there are 11 points in the game!).

