Inleiding Topologie – Exam 1 – April 20, 2011

Name: _

Notes:

- (a) justify all your answers!!!
- (b) the marking starts from 1 point. By solving the exercises, you can earn 9.5 more points. Your mark for this exam will be the minimum between your total number of points and 10.
- 1. On $X = \mathbb{R}$ consider the family of subsets:

$$\mathcal{B} := \{ (-p, p) : p \in \mathbb{Q}, p > 0 \}, \ \mathcal{T} = \{ (-a, a) : 0 \le a \le \infty \}.$$

- (a) Show that \mathcal{B} is a topology basis (0.5 pt).
- (b) Show that \mathcal{T} is the topology associated to \mathcal{B} . (0.5 pt).
- (c) Is the sequence $x_n = (-1)^n + \frac{1}{n}$ convergent in (X, \mathcal{T}) ? To what? (0.5 pt).
- (d) Find the interior and the closure of A = (-1, 2) in (X, \mathcal{T}) (0.5 pt).
- (e) Show that any continuous function $f: X \to \mathbb{R}$ is constant (0.5 pt).
- (f) For the topological space (X, \mathcal{T}) , decide whether it is:
 - 1. Hausdorff (0.5 pt).
 - 2. 1st countable (0.5 pt).
 - 3. Metrizable (0.5 pt).
 - 4. Connected (0.5 pt).
- 2. Which of the following spaces are homeomorphic and which are not:
 - (a) $(1, \infty)$ and $(0, \infty)$ (0.5 pt).
 - (b) $\mathbb{R}^2 D^2$ and $\mathbb{R}^2 \{0\}$ (0.5 pt).
 - (c) (0,1) and [0,1) (0.5 pt).
 - (d) $S^1 \times (\mathbb{R}^2 \{0\})$ and $T^2 \times \mathbb{R}^*$ (0.5 pt).
 - (e) $S^1 \times (\mathbb{R}^2 \{0\})$ and $T^2 \times \mathbb{R}^*_+$ (0.5 pt).

(here D^2 denotes the closed unit disk, T^2 denoted the torus. $\mathbb{R}^* = \mathbb{R} - \{0\}, \mathbb{R}^*_+ = (0, \infty)$).

3. Consider the map

$$\pi \colon \mathbb{R}^2 \to S^1 \times \mathbb{R}, \qquad (x, y) \mapsto \left(\left(\cos(x + y), \sin(x + y) \right), \, x - y \right) \in S^1 \times \mathbb{R}.$$

- (a) Describe an equivalence relation R on \mathbb{R}^2 such that $(S^1 \times \mathbb{R}, \pi)$ is a quotient of \mathbb{R}^2 modulo R (0.5 pt).
- (b) Find a group Γ and an action of Γ on \mathbb{R}^2 such that R is the equivalence relation induced by this action $(0.5 \ pt)$.
- (c) Show that, indeed, \mathbb{R}^2/Γ is homeomorphic to $S^1 \times \mathbb{R}$ (0.5 pt).
- 4. Show that, if a topological space X is Hausdorff, then the cone Cone(X) of X is Hausdorff $(0.5 \ pt)$.
- 5. Show that any continuous function $f : [0,1] \to [0,1]$ admits a fixed-point, i.e. there exists $t_0 \in [0,1]$ such that $f(t_0) = t_0$. (0.5 pt).