Tentamen Inleiding Topologie, WISB243 2019-01-29, 13:30 – 16:30

Solution 1

- (a) Since $\mathbb{R} \notin \mathscr{B}$, the collection \mathscr{B} is not a topology. To see that it is a topology basis, let B_1, B_2 be two elements of B and assume that $x \in B_1 \cap B_2$. Then $B_j = (a_j, n_j]$ with $n_j \in \mathbb{Z}$ and $a_j \in \mathbb{R}$. We have the inequalities $a_j < x \le n_j$ Hence, $a := \max(a_1, a_2) < x \le \min(n_1, n_2) =: n$. Clearly, $x \in (a, n] \subset B_1 \cap B_2$. It follows that B is a basis.
- (b) Let ℬ₀ = {(q,n] | n ∈ ℤ, q ∈ ℚ, q < n}. Then ℬ₀ is a countable subset of ℬ. If B ∈ ℬ, then B = (a,n] for a ∈ ℝ and n ∈ ℤ. Clearly B is the union of the sets (q,n] ∈ ℬ₀ with q ∈ ℚ, a < q < n. It follows that ℬ₀ is a basis for 𝒯. As ℬ₀ is countable, it follows that 𝒯 is second countable.

Clearly, if $B := (a, n] \in \mathscr{B}$ contains $\frac{1}{2}$, then $n \ge 1$ and it follows that $1 \in B$. Hence 1 and $\frac{1}{2}$ cannot be separated by sets from the basis, and therefore not by open sets. We thus see that $(\mathbb{R}, \mathscr{T})$ is not Hausdorff. Since every metric space is Hausdorff, $(\mathbb{R}, \mathscr{T})$ cannot be metrizable.

(c) If $x \in (1,\infty)$, then $x \in (1,n]$ for some $n \in \mathbb{Z}$. As the latter set is disjoint from *A*, it follows that *x* does not belong to the closure of *A*.

If $x \in (0, \frac{1}{2})$ then each set from \mathscr{B} containing x is of the form B = (a, n] with $n \ge 1$ and $a < \frac{1}{2}$. Each such set B intersects A, so that x is in the closure of A. On the other hand, if x < 0, then $x \in B := (x - 1, 0] \in \mathscr{B}$, and $B \cap A = \emptyset$. It follows that such x is not in the closure of A. We conclude that the closure of A equals (0, 1].

(d) Let 𝒞 be an open cover of A by sets from 𝔅. Then there is a set U ∈ 𝒜 which contains ½. Since 𝔅 is a basis, there is a B ∈ 𝔅 such that ½ ∈ B ⊂ U. There exist n ∈ ℤ and a ∈ ℝ such that B = (a,n], hence n ≥ 1 and a < ½. It follows that A ⊂ B ⊂ U. We conclude that 𝒜 contains a finite subcover (consisting of just U). Hence, A is compact.

We define $U_0 = (-1,0]$ and for $j \ge 1$ we define $U_j = (\frac{1}{j},1]$. Then $\{U_j\}_{j\ge 0}$ is a cover of [0,1]. Any finite subcover is contained in a union $U_0 \cup U_1 \cup \ldots \cup U_N$ which does not contain the point 1/N of [0,1]. Hence the given cover has no finite subcover, and we conclude that [0,1] is not compact.

Solution 2

- (a) It is easy to see that $\mathbb{R}^2 \setminus \{(0,0)\}$ is arcwise connected. Hence it is connected.
- (b) Suppose there exists a continuous injective map $f : \mathbb{R}^2 \to \mathbb{R}$. Then by continuity and connectedness of f it follows that $f(\mathbb{R}^2)$ is connected, hence an interval I in

 \mathbb{R} . This interval has at least two points, so contains an interval of the form (a,b) with a < b. Take $c \in (a,b)$, then $I \setminus \{c\}$ is not an interval, hence not connected. On the other hand, c = f(p) for a point $p \in \mathbb{R}^2$. By injectivity, it follows that $f(\mathbb{R}^2 \setminus \{p\}) = I \setminus \{c\}$. Since *f* is continuous and $\mathbb{R}^2 \setminus \{p\}$ arcwise connected, it follows that $f(\mathbb{R}^2 \setminus \{p\})$ is connected, contradiction.

(c) Let $g: M \to S^1$ be a continuous injective map. Since M is a topological manifold, there exists a continuous map $\varphi: \mathbb{R}^2 \to M$ which is a homeomorphism onto an open subset $U \subset M$. Replacing \mathbb{R}^2 by an open ball, which is homeomorphic to \mathbb{R}^2 , we see that we may arrange that φ is not surjective. Select $m \in M - \varphi(M)$, then by injectivity of g it follows that $g \circ \varphi: \mathbb{R}^2 \to S^1 - \{g(m)\}$ is injective continuous. There exists a homeomorphism $\psi: S^1 - g(m) \to \mathbb{R}$. We now see that $\psi \circ g \circ \varphi: \mathbb{R}^2 \to \mathbb{R}$ is injective continuous, contradicting (a).

Solution 3

- (a) Let x ∈ X. Then π(x) ∈ π(A) if and only if π(x) = π(a) for some a ∈ A. This implies that x ∈ A. We thus see that π⁻¹(π(A)) ⊂ A. The converse inclusion is obvious.
- (b) Let x ∈ X. Then π(x) ∈ π(S) implies that π(x) = π(y) for an y ∈ S. Since y ∉ A it follows that x = y ∈ S. Hence π⁻¹(π(S)) ⊂ S. Again, the converse inclusion is obvious.
- (c) Write $T = A \cup S$ with $S = T \setminus A$. Then $\pi(T) = \pi(A) \cup \pi(S)$ so $\pi^{-1}(\pi(T)) = \pi^{-1}(\pi(A)) \cup \pi^{-1}(\pi(S)) = A \cup S = T$.
- (d) Let X = U ∪ V be a partition by open subsets. Then A = (A ∩ U) ∪ (A ∩ V) is a disjoint union of open sets for the induced topology. Since A is connected, one of the sets in the union must be empty. Without loss of generality, assume that A ∩ V = Ø. Then A ⊂ U and we see that π⁻¹(π(U)) = U and π⁻¹(π(V)) = V. By definition of the quotient topology, it follows that both π(U) and π(V) are open subsets of X/A. Moreover, they are disjoint. For if π(U) ∩ π(V) were not empty, then by surjectivity of π,

$$\emptyset \subsetneq \pi^{-1}(\pi(U) \cap \pi(V)) = U \cap V,$$

contradiction.

(e) If X is connected, the so is its image X/A under the continuous map π .

For the remaining implication, suppose that *X* is not connected. Then there exists a partition $X = U \cup V$ by open subsets. It follows that $X/A = \pi(U) \cup \pi(V)$, which union of non-empty open sets. The union is disjoint by (d). We conclude that X/A is not connected.

Solution 4

- (a) Each V_i is open in A for the induced topology. By definition this means that $V_i = A \cap U_i$ for a suitable open subset U_i of X.
- (b) Let x ∈ X. If x ∈ A then there exists i ∈ I such that x ∈ V_i, hence x ∈ U_i. On the other hand, if x ∉ A, then x ∈ X − A. It follows that 𝔄^{*} is an open covering of X.
- (c) The locally finite refinement exists by the definition of paracompactness of X.
- (d) Since \mathcal{W} is a cover of X it follows that

$$A = \cup_{j \in J} (A \cap W_j).$$

The sets $A \cap W_j$ are empty for $j \in J_0$. Hence \mathcal{W}' is an open cover of A.

Finally, let $j \in J_1$, then W_j is contained in a set $U \in \mathscr{U}^*$. Since $j \notin J_0$ it follows that $U \neq X - A$. Hence, there exists $i \in I$ such that $W_j \subset U_i$. It follows that

$$W_i \cap A \subset U_i \cap A = V_i.$$

Hence \mathscr{W}' is subordinate to \mathscr{V} .

(e) We will show that the cover \mathscr{W}' in (d) is locally finite. If $x \in A$ then there exists a neighborhood N of x in X such that the set $J_N := \{j \in J \mid N \cap W_j \neq \emptyset\}$ is finite. Now $N \cap A$ is a neighborhood of x in A. Furthermore, $N \cap A \cap W_j \neq \emptyset$ implies $j \notin J_0$ and $N \cap W_j \neq \emptyset$ hence $j \in J_N \cap J_1$. It follows that \mathscr{W}' is locally finite.

We have thus shown that every open cover of *A* admits a locally finite refinement. Therefore, *A* is paracompact.