Solution 1

(a) Since $\mathbb{R} \notin \mathscr{B}$, the collection \mathscr{B} is not a topology. To see that it is a topology basis, let B_{1}, B_{2} be two elements of B and assume that $x \in B_{1} \cap B_{2}$. Then $B_{j}=$ $\left(a_{j}, n_{j}\right]$ with $n_{j} \in \mathbb{Z}$ and $a_{j} \in \mathbb{R}$. We have the inequalities $a_{j}<x \leq n_{j}$ Hence, $a:=\max \left(a_{1}, a_{2}\right)<x \leq \min \left(n_{1}, n_{2}\right)=: n$. Clearly, $x \in(a, n] \subset B_{1} \cap B_{2}$. It follows that B is a basis.
(b) Let $\mathscr{B}_{0}=\{(q, n] \mid n \in \mathbb{Z}, q \in \mathbb{Q}, q<n\}$. Then \mathscr{B}_{0} is a countable subset of \mathscr{B}. If $B \in \mathscr{B}$, then $B=(a, n]$ for $a \in \mathbb{R}$ and $n \in \mathbb{Z}$. Clearly B is the union of the sets $(q, n] \in \mathscr{B}_{0}$ with $q \in \mathbb{Q}, a<q<n$. It follows that \mathscr{B}_{0} is a basis for \mathscr{T}. As \mathscr{B}_{0} is countable, it follows that \mathscr{T} is second countable.
Clearly, if $B:=(a, n] \in \mathscr{B}$ contains $\frac{1}{2}$, then $n \geq 1$ and it follows that $1 \in B$. Hence 1 and $\frac{1}{2}$ cannot be separated by sets from the basis, and therefore not by open sets. We thus see that $(\mathbb{R}, \mathscr{T})$ is not Hausdorff. Since every metric space is Hausdorff, $(\mathbb{R}, \mathscr{T})$ cannot be metrizable.
(c) If $x \in(1, \infty)$, then $x \in(1, n]$ for some $n \in \mathbb{Z}$. As the latter set is disjoint from A, it follows that x does not belong to the closure of A.
If $x \in\left(0, \frac{1}{2}\right)$ then each set from \mathscr{B} containing x is of the form $B=(a, n]$ with $n \geq 1$ and $a<\frac{1}{2}$. Each such set B intersects A, so that x is in the closure of A. On the other hand, if $x<0$, then $x \in B:=(x-1,0] \in \mathscr{B}$, and $B \cap A=\emptyset$. It follows that such x is not in the closure of A. We conclude that the closure of A equals $(0,1]$.
(d) Let \mathscr{U} be an open cover of A by sets from \mathscr{T}. Then there is a set $U \in \mathscr{U}$ which contains $\frac{1}{2}$. Since \mathscr{B} is a basis, there is a $B \in \mathscr{B}$ such that $\frac{1}{2} \in B \subset U$. There exist $n \in \mathbb{Z}$ and $a \in \mathbb{R}$ such that $B=(a, n]$, hence $n \geq 1$ and $a<\frac{1}{2}$. It follows that $A \subset B \subset U$. We conclude that \mathscr{U} contains a finite subcover (consisting of just $U)$. Hence, A is compact.
We define $U_{0}=(-1,0]$ and for $j \geq 1$ we define $U_{j}=\left(\frac{1}{j}, 1\right]$. Then $\left\{U_{j}\right\}_{j \geq 0}$ is a cover of $[0,1]$. Any finite subcover is contained in a union $U_{0} \cup U_{1} \cup \ldots \cup U_{N}$ which does not contain the point $1 / N$ of $[0,1]$. Hence the given cover has no finite subcover, and we conclude that $[0,1]$ is not compact.

Solution 2

(a) It is easy to see that $\mathbb{R}^{2} \backslash\{(0,0)\}$ is arcwise connected. Hence it is connected.
(b) Suppose there exists a continuous injective map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Then by continuity and connectedness of f it follows that $f\left(\mathbb{R}^{2}\right)$ is connected, hence an interval I in
\mathbb{R}. This interval has at least two points, so contains an interval of the form (a, b) with $a<b$. Take $c \in(a, b)$, then $I \backslash\{c\}$ is not an interval, hence not connected. On the other hand, $c=f(p)$ for a point $p \in \mathbb{R}^{2}$. By injectivity, it follows that $f\left(\mathbb{R}^{2} \backslash\{p\}\right)=I \backslash\{c\}$. Since f is continuous and $\mathbb{R}^{2} \backslash\{p\}$ arcwise connected, it follows that $f\left(\mathbb{R}^{2} \backslash\{p\}\right)$ is connected, contradiction.
(c) Let $g: M \rightarrow S^{1}$ be a continuous injective map. Since M is a topological manifold, there exists a continuous map $\varphi: \mathbb{R}^{2} \rightarrow M$ which is a homeomorphism onto an open subset $U \subset M$. Replacing \mathbb{R}^{2} by an open ball, which is homeomorphic to \mathbb{R}^{2}, we see that we may arrange that φ is not surjective. Select $m \in M$ $\varphi(M)$, then by injectivity of g it follows that $g \circ \varphi: \mathbb{R}^{2} \rightarrow S^{1}-\{g(m)\}$ is injective continuous. There exists a homeomorphism $\psi: S^{1}-g(m) \rightarrow \mathbb{R}$. We now see that $\psi \circ g \circ \varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is injective continuous, contradicting (a).

Solution 3

(a) Let $x \in X$. Then $\pi(x) \in \pi(A)$ if and only if $\pi(x)=\pi(a)$ for some $a \in A$. This implies that $x \in A$. We thus see that $\pi^{-1}(\pi(A)) \subset A$. The converse inclusion is obvious.
(b) Let $x \in X$. Then $\pi(x) \in \pi(S)$ implies that $\pi(x)=\pi(y)$ for an $y \in S$. Since $y \notin A$ it follows that $x=y \in S$. Hence $\pi^{-1}(\pi(S)) \subset S$. Again, the converse inclusion is obvious.
(c) Write $T=A \cup S$ with $S=T \backslash A$. Then $\pi(T)=\pi(A) \cup \pi(S)$ so $\pi^{-1}(\pi(T))=$ $\pi^{-1}(\pi(A)) \cup \pi^{-1}(\pi(S))=A \cup S=T$.
(d) Let $X=U \cup V$ be a partition by open subsets. Then $A=(A \cap U) \cup(A \cap V)$ is a disjoint union of open sets for the induced topology. Since A is connected, one of the sets in the union must be empty. Without loss of generality, assume that $A \cap V=\emptyset$. Then $A \subset U$ and we see that $\pi^{-1}(\pi(U))=U$ and $\pi^{-1}(\pi(V))=V$. By definition of the quotient topology, it follows that both $\pi(U)$ and $\pi(V)$ are open subsets of X / A. Moreover, they are disjoint. For if $\pi(U) \cap \pi(V)$ were not empty, then by surjectivity of π,

$$
\emptyset \subsetneq \pi^{-1}(\pi(U) \cap \pi(V))=U \cap V,
$$

contradiction.
(e) If X is connected, the so is its image X / A under the continuous map π.

For the remaining implication, suppose that X is not connected. Then there exists a partition $X=U \cup V$ by open subsets. It follows that $X / A=\pi(U) \cup \pi(V)$, which union of non-empty open sets. The union is disjoint by (d). We conclude that X / A is not connected.

Solution 4

(a) Each V_{i} is open in A for the induced topology. By definition this means that $V_{i}=A \cap U_{i}$ for a suitable open subset U_{i} of X.
(b) Let $x \in X$. If $x \in A$ then there exists $i \in I$ such that $x \in V_{i}$, hence $x \in U_{i}$. On the other hand, if $x \notin A$, then $x \in X-A$. It follows that \mathscr{U}^{*} is an open covering of X.
(c) The locally finite refinement exists by the definition of paracompactness of X.
(d) Since \mathscr{W} is a cover of X it follows that

$$
A=\cup_{j \in J}\left(A \cap W_{j}\right)
$$

The sets $A \cap W_{j}$ are empty for $j \in J_{0}$. Hence \mathscr{W}^{\prime} is an open cover of A.
Finally, let $j \in J_{1}$, then W_{j} is contained in a set $U \in \mathscr{U}^{*}$. Since $j \notin J_{0}$ it follows that $U \neq X-A$. Hence, there exists $i \in I$ such that $W_{j} \subset U_{i}$. It follows that

$$
W_{j} \cap A \subset U_{i} \cap A=V_{i} .
$$

Hence \mathscr{W}^{\prime} is subordinate to \mathscr{V}.
(e) We will show that the cover \mathscr{W}^{\prime} in (d) is locally finite. If $x \in A$ then there exists a neighborhood N of x in X such that the set $J_{N}:=\left\{j \in J \mid N \cap W_{j} \neq \emptyset\right\}$ is finite. Now $N \cap A$ is a neighborhood of x in A. Furthermore, $N \cap A \cap W_{j} \neq \emptyset$ implies $j \notin J_{0}$ and $N \cap W_{j} \neq \emptyset$ hence $j \in J_{N} \cap J_{1}$. It follows that \mathscr{W}^{\prime} is locally finite.
We have thus shown that every open cover of A admits a locally finite refinement. Therefore, A is paracompact.

