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Below you find the solutions. What I write here is rather short, but contains all the
crucial points. I apologize for the lack of graphics.

Problem 1 (5 points). Consider the equivalence relation ∼ on R, where x ∼ y iff x and y
are both positive or both negative or both zero. Let X = R/ ∼ with the quotient topology.
List (with proof) all closed subsets of X.

The space X has only three points, which we call −, 0 and +. The closed sets are ∅,
{0}, {−, 0}, {0,+} and X. Indeed, by definition of the quotient topology a set in X is open
if and only if its preimage in R is open. Thus our claim is that the preimage of A ⊂ X
in R is open if and only if A is X, {+,−}, {+}, {−} or ∅. This is easy to check in each
single case, e.g. the preimage of {−} is (−∞, 0), which is open and the preimage of {0,+}
is [0,∞), which is not open.

Problem 2 (10 points). Let (X, TX) and (Y, TY ) be topological spaces and f : X → Y a
function. Let further (Ci)i∈I be a cover of X by closed subsets Ci ⊆ X, i.e.

⋃
i∈I Ci = X.

Assume that f |Ci : Ci → Y is a continuous function for each i ∈ I, where we equip Ci with
the subspace topology.

(a) Give an example of X,Y, f and (Ci)i∈I as above, where f is not continuous.

(b) Show that f is necessarily continuous if the indexing set I is finite.

For part a: Let f : X → Y be any non-continuous function, I = X and Ci = {i}. As
every function from a point is continuous, this fulfills the conditions. E.g. take f : R→ R,
with f(x) = 0 if x ≤ 0 and 1 else.

For part b: We have seen that a function f : X → Y is continuous if and only if f−1(A)
is closed for every closed subset A ⊂ Y . Let A ⊂ Y be closed. Then Pi = (f |Ci)

−1(A) is
closed in Ci and thus closed in X. (Indeed, by definition there exists an open Ui ⊂ X with
Ui ∩ Ci = Ci \ Pi. Thus, (X \ Ui) ∩ Ci = Pi, which is thus the intersection of two closed
subsets and thus closed.) Clearly, f−1(A) =

⋃
i∈I Pi, which is closed since finite unions of

closed subsets are closed.

Problem 3 (6 points). Let X = C([0, 1],R) be the set of all continuous functions from [0, 1]
to R. We consider on it the topology induced by the metric d(f, g) = maxx∈[0,1] |f(x)−g(x)|.
Show that X is path-connected.
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Let f, g ∈ X. We want to show that they can be connected by a path. We assume
f 6= g as the other case is obvious. Define γ : [0, 1] → X by γ(t) : s 7→ tf(s) + (1 − t)g(s).
It remains to show that γ is continuous. We have

|t0f(s) + (1− t0)g(s)− t1f(s)− (1− t1)g(s)| = |(t0 − t1)f(s) + (t1 − t0)g(s)|
= |t0 − t1||f(s)− g(s)|

Thus d(γ(t0), γ(t1)) = |t0 − t1|d(f, g). We see that for ε > 0 and |t0 − t1| < δ = ε
d(f,g) , we

obtain indeed d(γ(t0), γ(t1)) < ε.

Problem 4 (6 points). Give examples i, j : S1 → T of embeddings of the circle into the
torus such that T \ i(S1) is not homeomorphic to T \ j(S1).

We view T as the quotient of the unit square Q = [0, 1]2 by the usual equivalence
relation with quotient map p : Q → T . Let i′ : S1 → Q the embedding as the circle of
radius 1

4 around (12 ,
1
2) and i = pi′. This is clearly injective and hence an embedding (as we

are between compact Hausdorff spaces). Let j : S1 → T be induced by the map

[0, 1]→ Q, t 7→ (t, 0).

This is an embedding for the same reason.
We claim that T \ i(S1) is disconnected. Indeed, p is closed (since it is a map between

compact Hausdorff spaces) and thus also open since it is surjective. Let U be the open ball
of radius 1

4 around (12 ,
1
2) and let V be the complement of its closure in Q. Then p(U) and

p(V ) are non-empty open disjoint subsets of T that cover T \ i(S1).
We claim that T \ j(S1) is connected. Indeed, it is a quotient of (0, 1)× [0, 1], which is

connected.
Thus the two complements cannot be homeomorphic.

Problem 5 (10 points). (a) Consider the open cover U = {(−2, 1), (−1, 2)} of the interval
(−2, 2) with the Euclidean topology. Give an example of a partition of unity subordinate
to U .

(b) Let X = {x, y} be a set with two elements. Give an example of a topology on X such
that every open cover1 has a subordinate partition of unity, but the topology is not
Hausdorff.

Part a: Let η1(x) =


1 if x(−2,−1

2)
1
2 − x if x ∈ [−1

2 ,
1
2 ]

0 if x ∈ (12 , 2)

.

Set η2 = 1− η1. The supports of η1 and η2 are (−2, 12 ] and [−1
2 , 2).

Part b: We take the indiscrete topology on X. This is not Hausdorff as the only
neighborhood of x is X, containing y. The two possible open covers are {X} and {X,∅}.
In the first case the function η = 1 defines a subordinate partition of unity. In the second
case take η1 = 1 and η2 = 0.

1For simplicity, you are allowed to assume that no open set occurs twice in the open cover.
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Problem 6 (13 points). Let p, q ∈ S2 be the points (1, 0, 0) and (−1, 0, 0). Let X =
S2/{p, q} with the quotient topology.

(a) Show that X is not a 2-dimensional manifold.

(b) Show that S2 \ {p, q} is not homeomorphic to R2. (Hint: Use one-point compactifica-
tions.)

Part a: Denote by [p] ∈ X the image of p ∈ S2. Note that the restriction of the quotient
map π : S2 → X defines a homeomorphism S2 \ {p, q} → X \ {[p]}.

Suppose that X is a 2-dimensional manifold. Then there exists an open neighborhood
U around [p] together with a homeomorphism ϕ : U → R2. Set Un = ϕ−1(Bd(ϕ([p]), 1n)).
Then Un \ {[p]} is path-connected. Indeed: this is homeomorphic to Bd(0, 1n) \ {0}. Every
point in it can be connected by a straight line with (0, 1

2n) or with (0,− 1
2n) and these two

can be connected by a semicircle.
Let V+ = {(x, y, z) ∈ S2 : x > 0} and V− = {(x, y, z) ∈ S2 : x < 0}. Since the set

π(V+ ∪ V−) is open, we must have π−1(Un) ⊂ V+ ∪ V− for some n. Since π−1(Un) is an
open neighborhood of {p, q}, it must intersect both V+ and V− non-trivially. But then
π−1(Un \{[p]})∩V+ and π−1(Un \{[p]})∩V− form a cover by non-empty open disjoint sets,
showing that π−1(Un \ {[p]}) and hence Un \ {[p]} is disconnected, in contradiction with
what we showed above.

Part b: Suppose that S2 \ {p, q} and R2 are homeomorphic. Then also their one-point
compactifications A and B are homeomorphic. We have seen in class that B ∼= S2, hence
it is a 2-dimensional manifold. We claim that A ∼= S2/{p, q}. Using part a we see that A
is not a 2-dimensional manifold and thus A and B cannot be homeomorphic.

Our claim follows by checking the following points:

• X = S2/{p, q} is compact (as a quotient of a compact space)

• X is Hausdorff: since S2 is Hausdorff and normal, we can for any x 6= p, q find disjoint
open neighborhoods U around x and V around {p, q}; their images are disjoint open
neighborhoods around [x] and [p]. Separating two point x 6= y in X that are not [p]
is even easier.

• X \ {[p]} is homeomorphic to S2 \ {p, q}

The one-point compactification is uniquely determined by these properties. (Cf. Theorem
4.40)


