
Answers exam Complex Functions 2010.

1. Write f = u+ iv. It is given that u(x, y) = 1
2 log (x2 + y2). Using the Cauchy

Riemann equations we notice
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The first equation gives us v(x, y) = v(x, 0) + arctan (y/x). Plugging this in the
second equation gives
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x2 + y2

Hence v(x, 0) is a constant function. Since f(1) = 0 we conclude that v(x, 0) is
identically zero. Thus v(x, y) = arctan (y/x).

2. The fastest way to calculate the convergence radius is by using the ratiotest

lim
n→∞

(n+ 1)d−1

nd−1
=
(
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n→∞

1 +
1
n

)d−1

= 1.

We have f1(z) = (1− z)−1 so the statement is trivial for this case. Assume the
statement is true for d. We notice (tacitly using Thm 5.1, page 72) that

fd+1(z) = zf ′d(z) = z
p′d(z)(1− z)d + pd(z)(d+ 1)(1− z)d−1

(1− z)2d

=
z(1− z)p′d(z) + (d+ 1)zpd(z)

(1− z)d+1

and the polynomial in the numerator indeed has degree at most d. We know that
(1− z)dfd(z) is a polynomial of degree at most d− 1. Hence its dth coefficient
is zero. We can find the coefficients of (1− z)d by Newtons binomial theorem:

(1− z)d =
d∑

n=0

(
d

n

)
(−1)nzn.

Now using the expression for the product of two series we arrive at

d∑
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n

)
(−1)nnd−1 = (−1)d
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(
d
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3. We know that 1/(zn + 1) has simple poles in the points e
πi
n e

2πik
n , k =

0, 1, . . . , n− 1. We parameterize our chain γ by the following curves:
γ1(t) = t 0 ≤ t ≤ R
γ2(t) = Reit 0 ≤ t ≤ 2π

n

γ3(t) = te
2πi
n 0 ≤ t ≤ R(reverse direction)
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First we estimate the integral over γ2:

lim
R→∞
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Hence the residue theorem gives us∫ ∞
0
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We conclude that∫ ∞

0
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=
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sinπ/n

4. Let U be a connected open set and let f be a function which is analytic on
U . Let us assume that there exists a point z0 ∈ U with |f(z0)| ≥ |f(z)| for all
z ∈ U . Now assume f is not locally constant at z0. Then f is an open mapping
in a neighborhood of z0. Thus there exists an open disk centered at f(z0) which
is a subset of f(U). But then f(U) contains points that have a larger distance
to the origin than f(z0). We conclude that f must be locally constant at z0.
By analytic continuation f must be constant on U .

5. Define the following function F : C→ C:

F (z) =
{
f(z) for Re(z) > 0
f(z + n)

∏n−1
k=0 g(z + k) for − n < Re(z) ≤ −n+ 1

Clearly f is analytic on {z ∈ C|Re(z) 6∈ Z≤0}. Suppose Re(z0) = −n ∈ Z≤0.
Denote by D a disk with radius < 1 centered at z0. We notice that for z ∈ D
with Re(z) > −n we have

F (z) = f(z + n)
n−1∏
k=0

g(z + k) = f(z + n+ 1)
n∏
k=0

g(z + k)

We conclude that F is equal to the analytic function f(z+n+ 1)
∏n
k=0 g(z+ k)

on D. Thus F is analytic in z0. We conclude that F is analytic on C.

6. Let f 6= 0 be such a function. We can write f(z) = anz
ng(z) for some

n ≥ 0 and an analytic function g : C → C satisfying g(0) = 1 and an 6= 0. We
notice using the residue theorem that

|an| =

∣∣∣∣∣ 1
2πi

∫
C|z|

f(ζ)
ζn+1

dζ

∣∣∣∣∣ ≤ 1
2π

∫ 2π

0

|f(|z|eiφ)|
|z|n

dφ =
|f(|z|)|
|z|n

Thus |f(|z|)| ≥ |an||z|n. This implies |g(z)| ≥ 1. Hence 1/g(0) is a maximum
for the analytic function 1/g. The maximum principle (or Liouville’s Theorem)
implies that g is constant. We conclude that functions of the form f : C → C,
f(z) = anz

n, are the only functions that satisfy the required properties.
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