Answers exam Complex Functions 2010.

1. Write $f=u+i v$. It is given that $u(x, y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$. Using the Cauchy Riemann equations we notice

$$
\begin{aligned}
& \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=\frac{x}{x^{2}+y^{2}} \\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=-\frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

The first equation gives us $v(x, y)=v(x, 0)+\arctan (y / x)$. Plugging this in the second equation gives

$$
\frac{\partial}{\partial x}\{v(x, 0)\}-\frac{y}{x^{2}+y^{2}}=-\frac{y}{x^{2}+y^{2}}
$$

Hence $v(x, 0)$ is a constant function. Since $f(1)=0$ we conclude that $v(x, 0)$ is identically zero. Thus $v(x, y)=\arctan (y / x)$.
2. The fastest way to calculate the convergence radius is by using the ratiotest

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{d-1}}{n^{d-1}}=\left(\lim _{n \rightarrow \infty} 1+\frac{1}{n}\right)^{d-1}=1
$$

We have $f_{1}(z)=(1-z)^{-1}$ so the statement is trivial for this case. Assume the statement is true for d. We notice (tacitly using Thm 5.1, page 72) that

$$
\begin{aligned}
f_{d+1}(z)=z f_{d}^{\prime}(z) & =z \frac{p_{d}^{\prime}(z)(1-z)^{d}+p_{d}(z)(d+1)(1-z)^{d-1}}{(1-z)^{2 d}} \\
& =\frac{z(1-z) p_{d}^{\prime}(z)+(d+1) z p_{d}(z)}{(1-z)^{d+1}}
\end{aligned}
$$

and the polynomial in the numerator indeed has degree at most d. We know that $(1-z)^{d} f_{d}(z)$ is a polynomial of degree at most $d-1$. Hence its $d^{\text {th }}$ coefficient is zero. We can find the coefficients of $(1-z)^{d}$ by Newtons binomial theorem:

$$
(1-z)^{d}=\sum_{n=0}^{d}\binom{d}{n}(-1)^{n} z^{n}
$$

Now using the expression for the product of two series we arrive at

$$
\sum_{n=0}^{d}\binom{d}{n}(-1)^{n} n^{d-1}=(-1)^{d} \sum_{n=0}^{d}\binom{d}{d-n}(-1)^{d-n} n^{d-1}=0
$$

3. We know that $1 /\left(z^{n}+1\right)$ has simple poles in the points $e^{\frac{\pi i}{n}} e^{\frac{2 \pi i k}{n}}, k=$ $0,1, \ldots, n-1$. We parameterize our chain γ by the following curves:

$$
\begin{cases}\gamma_{1}(t)=t & 0 \leq t \leq R \\ \gamma_{2}(t)=R e^{i t} & 0 \leq t \leq \frac{2 \pi}{n} \\ \gamma_{3}(t)=t e^{\frac{2 \pi i}{n}} & 0 \leq t \leq R(\text { reverse direction })\end{cases}
$$

First we estimate the integral over γ_{2} :

$$
\lim _{R \rightarrow \infty}\left|\int_{\gamma_{2}} \frac{1}{z^{n}+1} d z\right| \leq \lim _{R \rightarrow \infty} \int_{0}^{2 \pi / n} \frac{R d \phi}{\left|R^{n} e^{i n t}+1\right|} \leq \lim _{R \rightarrow \infty} \frac{2 \pi R}{n\left(R^{n}-1\right)}=0
$$

Hence the residue theorem gives us

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{x^{n}+1} & +0-\int_{0}^{\infty} \frac{e^{\frac{2 \pi i}{n}} d x}{e^{2 \pi i} x^{n}+1}=\int_{\gamma} \frac{d z}{z^{n}+1}=2 \pi i \operatorname{Res}\left(\frac{1}{1+z^{n}}, e^{\frac{\pi i}{n}}\right) \\
& =\frac{2 \pi i}{n\left(e^{\frac{\pi i}{n}}\right)^{n-1}}=\frac{2 \pi i}{-n e^{\frac{-\pi i}{n}}}
\end{aligned}
$$

We conclude that

$$
\int_{0}^{\infty} \frac{d x}{x^{n}+1}=\frac{2 \pi i}{-n e^{\frac{-\pi i}{n}}\left(1-e^{\frac{2 \pi i}{n}}\right)}=\frac{\pi / n}{\sin \pi / n}
$$

4. Let U be a connected open set and let f be a function which is analytic on U. Let us assume that there exists a point $z_{0} \in U$ with $\left|f\left(z_{0}\right)\right| \geq|f(z)|$ for all $z \in U$. Now assume f is not locally constant at z_{0}. Then f is an open mapping in a neighborhood of z_{0}. Thus there exists an open disk centered at $f\left(z_{0}\right)$ which is a subset of $f(U)$. But then $f(U)$ contains points that have a larger distance to the origin than $f\left(z_{0}\right)$. We conclude that f must be locally constant at z_{0}. By analytic continuation f must be constant on U.
5. Define the following function $F: \mathbb{C} \rightarrow \mathbb{C}$:

$$
F(z)= \begin{cases}f(z) & \text { for } \operatorname{Re}(z)>0 \\ f(z+n) \prod_{k=0}^{n-1} g(z+k) & \text { for }-n<\operatorname{Re}(z) \leq-n+1\end{cases}
$$

Clearly f is analytic on $\left\{z \in \mathbb{C} \mid \operatorname{Re}(z) \notin \mathbb{Z}_{\leq 0}\right\}$. Suppose $\operatorname{Re}\left(z_{0}\right)=-n \in \mathbb{Z}_{\leq 0}$. Denote by D a disk with radius <1 centered at z_{0}. We notice that for $z \in D$ with $\operatorname{Re}(z)>-n$ we have

$$
F(z)=f(z+n) \prod_{k=0}^{n-1} g(z+k)=f(z+n+1) \prod_{k=0}^{n} g(z+k)
$$

We conclude that F is equal to the analytic function $f(z+n+1) \prod_{k=0}^{n} g(z+k)$ on D. Thus F is analytic in z_{0}. We conclude that F is analytic on \mathbb{C}.
6. Let $f \neq 0$ be such a function. We can write $f(z)=a_{n} z^{n} g(z)$ for some $n \geq 0$ and an analytic function $g: \mathbb{C} \rightarrow \mathbb{C}$ satisfying $g(0)=1$ and $a_{n} \neq 0$. We notice using the residue theorem that

$$
\left|a_{n}\right|=\left|\frac{1}{2 \pi i} \int_{C_{|z|}} \frac{f(\zeta)}{\zeta^{n+1}} d \zeta\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left|f\left(|z| e^{i \phi}\right)\right|}{|z|^{n}} d \phi=\frac{|f(|z|)|}{|z|^{n}}
$$

Thus $|f(|z|)| \geq\left|a_{n}\right||z|^{n}$. This implies $|g(z)| \geq 1$. Hence $1 / g(0)$ is a maximum for the analytic function $1 / g$. The maximum principle (or Liouville's Theorem) implies that g is constant. We conclude that functions of the form $f: \mathbb{C} \rightarrow \mathbb{C}$, $f(z)=a_{n} z^{n}$, are the only functions that satisfy the required properties.

