MIDTERM COMPLEX FUNCTIONS

APRIL 18 2012, 9:00-12:00
Exercise $1(\boldsymbol{7} \boldsymbol{p} \boldsymbol{t})$ Let $a, b, c \in \mathbb{C}$ be located on the unit circle and let $a+b+c=0$. Prove that the corresponding points are the vertices of an equilateral triangle.

Without loss of generality $a=1$. Then $\operatorname{Im}(b)+\operatorname{Im}(c)=0$. Since both b and c are on the circle this is only possible when $c=\bar{b}$ (the case $c=-b$ is ruled out). Thus $2 \operatorname{Re}(b)=-1$, from which it follows that $\{b, c\}=\left\{e^{ \pm 2 \pi / 3}\right\}$, and we conclude that $a b c$ forms an equilateral triangle.

Remark: One can also find a geometrical proof. Consider the three vectors from 0 to a, a to $a+b$ and from $a+b$ to $a+b+c$. Since $a+b+c=0$ these vectors form a triangle, since they are unit vectors this triangle is equilateral. It follows from the picture below that $\alpha=\beta=\gamma=2 \pi / 3$ and thus $a b c$ forms an equilateral triangle.

Exercise $2(10 \boldsymbol{p t})$ Write the Cauchy-Riemann equations in polar coordinates (r, θ). Then show that the function $\log z=\log \rho+i \theta, z=r e^{i \theta}$, is holomorphic in the region $r>0,-\pi<\theta<\pi$.

We write $x=r \cos \phi$ and $y=r \sin \phi$ and $f=u+i v$ as usual. We notice using the chainrule
and the Cauchy-Riemann equations that

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r}=\frac{\partial u}{\partial x} \cos (\phi)+\frac{\partial u}{\partial y} \sin (\phi) \\
\frac{\partial v}{\partial r} & =\frac{\partial v}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial r}=-\frac{\partial u}{\partial y} \cos (\phi)+\frac{\partial u}{\partial x} \sin (\phi) \\
\frac{\partial u}{\partial \phi} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial \phi}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \phi}=-\frac{\partial u}{\partial x} r \sin (\phi)+\frac{\partial u}{\partial y} r \cos (\phi) \\
\frac{\partial v}{\partial \phi} & =\frac{\partial v}{\partial x} \frac{\partial x}{\partial \phi}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial \phi}=\frac{\partial u}{\partial y} r \sin (\phi)+\frac{\partial u}{\partial x} r \cos (\phi)
\end{aligned}
$$

It follows that

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \phi} \text { and } r \frac{\partial v}{\partial r}=-\frac{\partial u}{\partial \phi}
$$

The log as defined in the exercise obeys these equations (strictly speaking you should show that these are equivalent to the CR equations) and is thus holomorphic.

Exercise 3 (10 pt) Suppose $f: U \rightarrow \mathbb{C}$ is a non-constant holomorphic function on an open set $U \subset \mathbb{C}$ containing the closed unit disc $\overline{D(0,1)}$. Suppose that $|f(z)|=1$ for all $z \in \mathbb{C}$ with $|z|=1$. Prove that the equation $f(z)=0$ has a solution in the open unit disc $D(0,1)$.

By the maximum modulus principle $f(z)$ attains its (absolute) maximum (only) at the unit circle. However, if f does not have a root in the open unit disk then we can define $g: \overline{D(0 ; 1)} \rightarrow \mathbb{C}$ by $g(z)=1 / f(z)$. Then by the maximum modulus principle g attains its maximum (only) at the unit circle. But then the minimum and maximum of f equal each other. Thus $|f|=1$ and the maximum modulus principle implies that f is constant.

Exercise 4 (8 pt) Compute

$$
\int_{\gamma} \frac{\sin z}{z^{2}} d z \quad \text { and } \quad \int_{\gamma} \frac{\cos z}{z^{3}} d z
$$

where γ is the unit circle $|z|=1$ oriented counter-clockwise and traced once.

Using the extended Cauchy formula

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \oint_{|z-a|=r} \frac{f(z)}{(z-a)^{n+1}} d z
$$

we get

$$
\begin{aligned}
& \oint_{\gamma} \frac{\sin z}{z^{2}} d z=2 \pi i \cos (0)=2 \pi i \\
& \oint_{\gamma} \frac{\cos z}{z^{3}} d z=2 \pi i(-\cos (0)) / 2!=-\pi i
\end{aligned}
$$

Exercise 5 (10 pt) Suppose that a complex function f has a power series representation near the origin, i.e. there is a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ that converges absolutely to $f(z)$ in an open disc centered at $z=0$.
(i) Assuming that $a_{0} \neq 0$, prove that the function

$$
g(z)=\frac{1}{f(z)}
$$

also has has a power series representation near the origin.
Define $h(z)=1-f(z) / a_{0}$. Then $h(z)$ is analytic and this implies that

$$
\sum_{n=1}^{\infty}\left|a_{n}\right||z|^{n}
$$

coverges uniformly in some open neighborhood of $z=0$. This means in particular that it is continous and thus the we can find an open neighborhood small enough such that it is smaller then 1 . We may apply theorem 3.4 (p.66) to conclude that the composition of $1 /(1-T)$ with $h(T)$ (notice this formal composition makes sence) converges uniformly to $1 /(1-h(z))=a_{0} / f(z)$ in this neighborhood. Thus g has a powerseries representation near the origin.
(ii) Derive explicit formulas for the coefficients b_{0}, b_{1}, b_{2}, and b_{3} in the series $\sum_{n=0}^{\infty} b_{n} z^{n}$ representing the function g near the origin.

We have

$$
\begin{aligned}
a_{0} g(z) & =1+h(z)+h(z)^{2}+h(z)^{3}+\ldots \\
& =1+\left(-\frac{a_{1}}{a_{0}}\right) z+\left(-\frac{a_{2}}{a_{0}}+\frac{a_{1}^{2}}{a_{0}^{2}}\right) z^{2}+\left(-\frac{a_{3}}{a_{0}}+2 \frac{a_{1} a_{2}}{a_{0}^{2}}-\frac{a_{1}^{3}}{a_{0}^{3}}\right) z^{3}+\ldots
\end{aligned}
$$

Remark: alternatively one can use the correspondence holomorphic \Leftrightarrow analytic and remark that g is a holomorphic function. For the second part one could find the coefficients by tayloring $1 / f$.

