Dit tentamen is in elektronische vorm beschikbaar gemaakt door de \mathcal{TBC} van A-Eskwadraat. A-Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten in dit tentamen.

MIDTERM COMPLEX FUNCTIONS SOLUTIONS

APRIL 20 2011

Exercise 1.

a. It is well known that the geometric series converges for |z| < 1 and thus

$$\begin{aligned} \frac{1}{1 - e^{i\phi}z} - \frac{1}{1 - e^{-i\phi}z} &= \sum_{n=0}^{\infty} e^{in\phi}z^n - \sum_{n=0}^{\infty} e^{-in\phi}z^n \\ &= \sum_{n=0}^{\infty} (e^{in\phi} - e^{-in\phi})z^n = 2i\sum_{n=1}^{\infty} \sin(n\phi)z^n \end{aligned}$$

for |z| < 1. Thus $\rho \ge 1$. If $\rho > 1$ then the series should be analytic and hence continuous in $e^{i\phi}$, since this is not the case we must conclude that $\rho = 1$. Clearly our series equals a rational function on |z| < 1.

b. For |z| < 1 we have

$$\begin{split} -4\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sin(k\phi) \sin(n\phi - k\phi)\right) z^{n} &= \left(\frac{1}{1 - e^{i\phi}z} - \frac{1}{1 - e^{-i\phi}z}\right)^{2} \\ &= \frac{1}{(1 - e^{i\phi}z)^{2}} + \frac{1}{(1 - e^{-i\phi}z)^{2}} - 2\frac{1}{(1 - e^{i\phi}z)(1 - e^{-i\phi}z)} \\ &= e^{-i\phi}\frac{d}{dz}\frac{1}{1 - e^{i\phi}} + e^{i\phi}\frac{d}{dz}\frac{1}{1 - e^{-i\phi}} - \frac{2}{e^{i\phi} - e^{-i\phi}}\left(\frac{e^{i\phi}}{1 - e^{i\phi}z} - \frac{e^{-i\phi}}{1 - e^{-i\phi}z}\right) \\ &= e^{-i\phi}\sum_{n=1}^{\infty} ne^{in\phi}z^{n-1} + e^{i\phi}\sum_{n=1}^{\infty} ne^{-in\phi}z^{n-1} \\ &- \frac{2}{e^{i\phi} - e^{-i\phi}}\left(\sum_{n=0}^{\infty} e^{i(n+1)\phi}z^{n} - \sum_{n=0}^{\infty} e^{-i(n+1)\phi}z^{n}\right) \\ &= 2\sum_{n=0}^{\infty} \left((n+1)\cos(n\phi) - \frac{\sin(n\phi + \phi)}{\sin(\phi)}\right)z^{n} \end{split}$$

The fact that these two series coincide on an open set with accumulation point 0 implies that their coefficients are equal, and we are done.

c. We know that $\frac{2\pi}{n} \in (0, \pi)$ thus we may apply the formula from b.

$$\sum_{k=0}^{n} \sin^2\left(\frac{2\pi k}{n}\right) = \sum_{k=0}^{n} \sin\left(\frac{2\pi k}{n}\right) \sin\left(\frac{2\pi k}{n} - \frac{2\pi n}{n}\right) = \frac{1}{2}\left((n+1) - 1\right) = \frac{n}{2}.$$

Exercise 2. Define the polynomial $P : \mathbb{C} \to \mathbb{C}$

$$P(z) = \prod_{i=1}^{n} (z - z_i)$$

This is an analytic nonconstant function on \mathbb{C} . The Maximum Modulus Principle implies (see Corollary 1.4, p.92) that |P(z)| attains its maximum over $\overline{D(0,1)}$ at a point on its boundary, i.e. on the unit circle. Suppose that $|P(z)| \leq 1$ for all points z on the unit circle. Then we must have |P(z)| < 1 for all points $z \in D(0,1)$. But $|P(0)| = |z_1| \cdot |z_2| \dots |z_n| = 1$, which is a contradiction, and we must conclude that there exists a point zon the unit circle such that $|z - z_1| \cdot |z - z_2| \cdots |z - z_n| = |P(z)| > 1$.

Exercise 3.

a. Let $z \in U$ and write z = x + iy with x, y real. It follows that $(\operatorname{Re} f(z))^2 - (\operatorname{Im} f(z))^2 = x$ and $2(\operatorname{Re} f(z))(\operatorname{Im} f(z)) = y$. Since $y \neq 0$ we have $\operatorname{Re} f(z) \neq 0$ and we may write

$$(\operatorname{Re} f(z))^2 - \left(\frac{y}{2\operatorname{Re} f(z)}\right)^2 = x$$

We can write this as a quadratic equation:

$$((\operatorname{Re} f(z))^2)^2 - x(\operatorname{Re} f(z))^2 - \frac{y^2}{4}$$

It's solutions are

$$(\operatorname{Re} f(z))^2 = \frac{x \pm \sqrt{x^2 + y^2}}{2} = \pm \frac{|z| \pm \operatorname{Re}(z)}{2}.$$

Since $\operatorname{Re} f(z)$ is a real number we must take the plus sign. Also we find that

$$(\operatorname{Im} f(z))^2 = (\operatorname{Re} f(z))^2 - x = \frac{|z| + \operatorname{Re}(z)}{2} - \frac{2\operatorname{Re}(z)}{2} = \frac{|z| - \operatorname{Re}(z)}{2}.$$

We conclude that there exist $\alpha, \beta: U \to \{-1, 1\}$ such that for all $z \in U \setminus \mathbb{R}$

$$\operatorname{Re} f(z) = \frac{\alpha(z)}{\sqrt{2}}\sqrt{|z| + \operatorname{Re}(z)}$$
 and $\operatorname{Im} f(z) = \frac{\beta(z)}{\sqrt{2}}\sqrt{|z| - \operatorname{Re}(z)}$

b. Write $u(x, y) = \operatorname{Re} f(x + iy)$ and $v(x, y) = \operatorname{Im} f(x + iy)$. If the Cauchy Riemann equations are satisfied in some point then we may at least assume that α and β do not change sign in some open disc around that point. So

$$\frac{\partial u}{\partial x} = \frac{\alpha(x+iy)}{2\sqrt{2}} \left(\frac{x}{\sqrt{x^2+y^2}} + 1\right) \frac{1}{\sqrt{\sqrt{x^2+y^2}+x}} = \frac{\alpha(x+iy)}{2\sqrt{2}} \frac{\sqrt{\sqrt{x^2+y^2}+x}}{\sqrt{x^2+y^2}}$$

and

$$\frac{\partial v}{\partial y} = \frac{\beta(x+iy)}{2\sqrt{2}} \frac{y}{\sqrt{x^2+y^2}} \frac{1}{\sqrt{\sqrt{x^2+y^2}-x}} = \frac{y}{|y|} \frac{\beta(x+iy)}{2\sqrt{2}} \frac{\sqrt{\sqrt{x^2+y^2}+x}}{\sqrt{x^2+y^2}}$$

and we must conclude that $|y|\alpha(x+iy) = y\beta(x+iy)$.

c. Let us suppose f is analytic. C can be parametrized by a continuous path γ . Then $(\operatorname{Re} f) \circ \gamma$ is continuous so if α changes sign on $C \setminus \{-R\}$ then by the intermediate value theorem there should be a point z on $C \setminus \{-R\}$ such that $\operatorname{Re} f(z) = 0$. Since this is not the case we must conclude that α is constant on $C \setminus \{-R\}$. Analogously β is constant on $C \setminus \{R\}$. This is impossible because the result of b. implies that α and β should have the same sign on the part of the circle where $\operatorname{Im}(z) > 0$ and opposite sign on the part of the circle where $\operatorname{Im}(z) < 0$. We conclude that f is not analytic.

Exercise 4. Denote by C_R the circle with radius R centered at the origin and let $f(z) = e^z$. We can parametrize the circle by Re^{it} with $0 \le t \le 2\pi$. We notice using Thm 7.3 that

$$\int_{0}^{2\pi} e^{R\cos(t)}\cos(R\sin(t) - nt) \, dt = R^{n} \operatorname{Re}\left(\int_{0}^{2\pi} \frac{e^{Re^{it}}}{(Re^{it})^{n+1}} Re^{it} dt\right)$$
$$= R^{n} \operatorname{Re}\left(\frac{1}{i} \oint_{C_{R}} \frac{f(z)}{z^{n+1}} dz\right) = R^{n} \operatorname{Re}\left(\frac{2\pi f^{(n)}(0)}{n!}\right) = \frac{2\pi R^{n}}{n!}.$$

Exercise 5. Let $z_0 \in D(0, \rho)$. Because $D(0, \rho)$ is open we can find an r > 0 such that $|z_0| + r < \rho$. Now write $z = z_0 + (z - z_0)$. Then by the binomial formula we have

$$z^{n} = (z_{0} + (z - z_{0}))^{n} = \sum_{k=0}^{n} {n \choose k} z_{0}^{n-k} (z - z_{0})^{k}.$$

Now if $|z - z_0| < r$ we have $|z_0| + |z - z_0| < \rho$. Thus

$$\sum_{n=0}^{\infty} |a_n| (|z_0| + |z - z_0|)^n = \sum_{n=0}^{\infty} |a_n| \left(\sum_{k=0}^n \binom{n}{k} |z_0|^{n-k} |z - z_0|^k \right)$$

converges. Since the convergence is absolute we may rearrange the terms to conclude that

$$f(z) = \sum_{k=0}^{\infty} \left(\sum_{n=k}^{\infty} a_n \binom{n}{k} z_0^{n-k} \right) (z-z_0)^k$$

converges absolutely for $|z - z_0| < r$. Thus f is analytic in z_0 . Since z_0 was arbitrary we conclude that f is analytic on $D(0, \rho)$.