MIDTERM COMPLEX FUNCTIONS SOLUTIONS

APRIL 202011

Exercise 1.

a. It is well known that the geometric series converges for $|z|<1$ and thus

$$
\begin{aligned}
\frac{1}{1-e^{i \phi} z}-\frac{1}{1-e^{-i \phi} z} & =\sum_{n=0}^{\infty} e^{i n \phi} z^{n}-\sum_{n=0}^{\infty} e^{-i n \phi} z^{n} \\
& =\sum_{n=0}^{\infty}\left(e^{i n \phi}-e^{-i n \phi}\right) z^{n}=2 i \sum_{n=1}^{\infty} \sin (n \phi) z^{n}
\end{aligned}
$$

for $|z|<1$. Thus $\rho \geq 1$. If $\rho>1$ then the series should be analytic and hence continuous in $e^{i \phi}$, since this is not the case we must conclude that $\rho=1$. Clearly our series equals a rational function on $|z|<1$.
b. For $|z|<1$ we have

$$
\begin{aligned}
-4 \sum_{n=0}^{\infty} & \left(\sum_{k=0}^{n} \sin (k \phi) \sin (n \phi-k \phi)\right) z^{n}=\left(\frac{1}{1-e^{i \phi} z}-\frac{1}{1-e^{-i \phi} z}\right)^{2} \\
& =\frac{1}{\left(1-e^{i \phi} z\right)^{2}}+\frac{1}{\left(1-e^{-i \phi} z\right)^{2}}-2 \frac{1}{\left(1-e^{i \phi} z\right)\left(1-e^{-i \phi} z\right)} \\
& =e^{-i \phi} \frac{d}{d z} \frac{1}{1-e^{i \phi}}+e^{i \phi} \frac{d}{d z} \frac{1}{1-e^{-i \phi}}-\frac{2}{e^{i \phi}-e^{-i \phi}}\left(\frac{e^{i \phi}}{1-e^{i \phi} z}-\frac{e^{-i \phi}}{1-e^{-i \phi} z}\right) \\
& =e^{-i \phi} \sum_{n=1}^{\infty} n e^{i n \phi} z^{n-1}+e^{i \phi} \sum_{n=1}^{\infty} n e^{-i n \phi} z^{n-1} \\
& -\frac{2}{e^{i \phi}-e^{-i \phi}}\left(\sum_{n=0}^{\infty} e^{i(n+1) \phi} z^{n}-\sum_{n=0}^{\infty} e^{-i(n+1) \phi} z^{n}\right) \\
& =2 \sum_{n=0}^{\infty}\left((n+1) \cos (n \phi)-\frac{\sin (n \phi+\phi)}{\sin (\phi)}\right) z^{n}
\end{aligned}
$$

The fact that these two series coincide on an open set with accumulation point 0 implies that their coefficients are equal, and we are done.
c. We know that $\frac{2 \pi}{n} \in(0, \pi)$ thus we may apply the formula from b .

$$
\sum_{k=0}^{n} \sin ^{2}\left(\frac{2 \pi k}{n}\right)=\sum_{k=0}^{n} \sin \left(\frac{2 \pi k}{n}\right) \sin \left(\frac{2 \pi k}{n}-\frac{2 \pi n}{n}\right)=\frac{1}{2}((n+1)-1)=\frac{n}{2}
$$

Exercise 2. Define the polynomial $P: \mathbb{C} \rightarrow \mathbb{C}$

$$
P(z)=\prod_{i=1}^{n}\left(z-z_{i}\right)
$$

This is an analytic nonconstant function on \mathbb{C}. The Maximum Modulus Principle implies (see Corollary 1.4, p.92) that $|P(z)|$ attains its maximum over $\bar{D}(0,1)$ at a point on its boundary, i.e. on the unit circle.
Suppose that $|P(z)| \leq 1$ for all points z on the unit circle. Then we must have $|P(z)|<1$ for all points $z \in D(0,1)$. But $|P(0)|=\left|z_{1}\right| \cdot\left|z_{2}\right| \ldots\left|z_{n}\right|=1$, which is a contradiction, and we must conclude that there exists a point z on the unit circle such that $\left|z-z_{1}\right| \cdot\left|z-z_{2}\right| \cdots\left|z-z_{n}\right|=|P(z)|>1$.

Exercise 3.

a. Let $z \in U$ and write $z=x+i y$ with x, y real. It follows that $(\operatorname{Re} f(z))^{2}-$ $(\operatorname{Im} f(z))^{2}=x$ and $2(\operatorname{Re} f(z))(\operatorname{Im} f(z))=y$. Since $y \neq 0$ we have $\operatorname{Re} f(z) \neq 0$ and we may write

$$
(\operatorname{Re} f(z))^{2}-\left(\frac{y}{2 \operatorname{Re} f(z)}\right)^{2}=x
$$

We can write this as a quadratic equation:

$$
\left((\operatorname{Re} f(z))^{2}\right)^{2}-x(\operatorname{Re} f(z))^{2}-\frac{y^{2}}{4}
$$

It's solutions are

$$
(\operatorname{Re} f(z))^{2}=\frac{x \pm \sqrt{x^{2}+y^{2}}}{2}= \pm \frac{|z| \pm \operatorname{Re}(z)}{2}
$$

Since $\operatorname{Re} f(z)$ is a real number we must take the plus sign. Also we find that

$$
(\operatorname{Im} f(z))^{2}=(\operatorname{Re} f(z))^{2}-x=\frac{|z|+\operatorname{Re}(z)}{2}-\frac{2 \operatorname{Re}(z)}{2}=\frac{|z|-\operatorname{Re}(z)}{2} .
$$

We conclude that there exist $\alpha, \beta: U \rightarrow\{-1,1\}$ such that for all $z \in U \backslash \mathbb{R}$

$$
\operatorname{Re} f(z)=\frac{\alpha(z)}{\sqrt{2}} \sqrt{|z|+\operatorname{Re}(z)} \text { and } \operatorname{Im} f(z)=\frac{\beta(z)}{\sqrt{2}} \sqrt{|z|-\operatorname{Re}(z)}
$$

b. Write $u(x, y)=\operatorname{Re} f(x+i y)$ and $v(x, y)=\operatorname{Im} f(x+i y)$. If the Cauchy Riemann equations are satisfied in some point then we may at least assume that α and β do not change sign in some open disc around that point. So

$$
\frac{\partial u}{\partial x}=\frac{\alpha(x+i y)}{2 \sqrt{2}}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}+1\right) \frac{1}{\sqrt{\sqrt{x^{2}+y^{2}}+x}}=\frac{\alpha(x+i y)}{2 \sqrt{2}} \frac{\sqrt{\sqrt{x^{2}+y^{2}}+x}}{\sqrt{x^{2}+y^{2}}}
$$

and

$$
\frac{\partial v}{\partial y}=\frac{\beta(x+i y)}{2 \sqrt{2}} \frac{y}{\sqrt{x^{2}+y^{2}}} \frac{1}{\sqrt{\sqrt{x^{2}+y^{2}}-x}}=\frac{y}{|y|} \frac{\beta(x+i y)}{2 \sqrt{2}} \frac{\sqrt{\sqrt{x^{2}+y^{2}}+x}}{\sqrt{x^{2}+y^{2}}}
$$

and we must conclude that $|y| \alpha(x+i y)=y \beta(x+i y)$.
c. Let us suppose f is analytic. C can be parametrized by a continuous path γ. Then $(\operatorname{Re} f) \circ \gamma$ is continuous so if α changes sign on $C \backslash\{-R\}$ then by the intermediate value theorem there should be a point z on $C \backslash\{-R\}$ such that $\operatorname{Re} f(z)=0$. Since this is not the case we must conclude that α is constant on $C \backslash\{-R\}$. Analogously β is constant on $C \backslash\{R\}$. This is impossible because the result of b . implies that α and β should have the same sign on the part of the circle where $\operatorname{Im}(z)>0$ and opposite sign on the part of the circle where $\operatorname{Im}(z)<0$. We conclude that f is not analytic.

Exercise 4. Denote by C_{R} the circle with radius R centered at the origin and let $f(z)=e^{z}$. We can parametrize the circle by $R e^{i t}$ with $0 \leq t \leq 2 \pi$. We notice using Thm 7.3 that

$$
\begin{aligned}
\int_{0}^{2 \pi} e^{R \cos (t)} \cos (R \sin (t)-n t) d t=R^{n} \operatorname{Re}\left(\int_{0}^{2 \pi} \frac{e^{R e^{i t}}}{\left(R e^{i t}\right)^{n+1}} R e^{i t} d t\right) \\
=R^{n} \operatorname{Re}\left(\frac{1}{i} \oint_{C_{R}} \frac{f(z)}{z^{n+1}} d z\right)=R^{n} \operatorname{Re}\left(\frac{2 \pi f^{(n)}(0)}{n!}\right)=\frac{2 \pi R^{n}}{n!}
\end{aligned}
$$

Exercise 5. Let $z_{0} \in D(0, \rho)$. Because $D(0, \rho)$ is open we can find an $r>0$ such that $\left|z_{0}\right|+r<\rho$. Now write $z=z_{0}+\left(z-z_{0}\right)$. Then by the binomial formula we have

$$
z^{n}=\left(z_{0}+\left(z-z_{0}\right)\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} z_{0}^{n-k}\left(z-z_{0}\right)^{k} .
$$

Now if $\left|z-z_{0}\right|<r$ we have $\left|z_{0}\right|+\left|z-z_{0}\right|<\rho$. Thus

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|\left(\left|z_{0}\right|+\left|z-z_{0}\right|\right)^{n}=\sum_{n=0}^{\infty}\left|a_{n}\right|\left(\sum_{k=0}^{n}\binom{n}{k}\left|z_{0}\right|^{n-k}\left|z-z_{0}\right|^{k}\right)
$$

converges. Since the convergence is absolute we may rearrange the terms to conclude that

$$
f(z)=\sum_{k=0}^{\infty}\left(\sum_{n=k}^{\infty} a_{n}\binom{n}{k} z_{0}^{n-k}\right)\left(z-z_{0}\right)^{k}
$$

converges absolutely for $\left|z-z_{0}\right|<r$. Thus f is analytic in z_{0}. Since z_{0} was arbitrary we conclude that f is analytic on $D(0, \rho)$.

