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Exercise 1.
a. It is well known that the geometric series converges for |z| < 1 and thus

1

1− eiφz
− 1

1− e−iφz
=

∞∑
n=0

einφzn −
∞∑
n=0

e−inφzn

=

∞∑
n=0

(einφ − e−inφ)zn = 2i
∞∑
n=1

sin(nφ)zn

for |z| < 1. Thus ρ ≥ 1. If ρ > 1 then the series should be analytic and
hence continuous in eiφ, since this is not the case we must conclude that
ρ = 1. Clearly our series equals a rational function on |z| < 1.

b. For |z| < 1 we have

−4

∞∑
n=0

(
n∑
k=0

sin(kφ) sin(nφ− kφ)

)
zn =

(
1

1− eiφz
− 1

1− e−iφz

)2

=
1

(1− eiφz)2
+

1

(1− e−iφz)2
− 2

1

(1− eiφz)(1− e−iφz)

= e−iφ
d

dz

1

1− eiφ
+ eiφ

d

dz

1

1− e−iφ
− 2

eiφ − e−iφ

(
eiφ

1− eiφz
− e−iφ

1− e−iφz

)
= e−iφ

∞∑
n=1

neinφzn−1 + eiφ
∞∑
n=1

ne−inφzn−1

− 2

eiφ − e−iφ

( ∞∑
n=0

ei(n+1)φzn −
∞∑
n=0

e−i(n+1)φzn

)

= 2
∞∑
n=0

(
(n+ 1) cos(nφ)− sin(nφ+ φ)

sin(φ)

)
zn

The fact that these two series coincide on an open set with accumulation
point 0 implies that their coefficients are equal, and we are done.

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1



c. We know that 2π
n ∈ (0, π) thus we may apply the formula from b.

n∑
k=0

sin2

(
2πk

n

)
=

n∑
k=0

sin

(
2πk

n

)
sin

(
2πk

n
− 2πn

n

)
=

1

2
((n+ 1)− 1) =

n

2
.

Exercise 2. Define the polynomial P : C→ C

P (z) =
n∏
i=1

(z − zi)

This is an analytic nonconstant function on C. The Maximum Modulus
Principle implies (see Corollary 1.4, p.92) that |P (z)| attains its maximum
over D(0, 1) at a point on its boundary, i.e. on the unit circle.
Suppose that |P (z)| ≤ 1 for all points z on the unit circle. Then we must
have |P (z)| < 1 for all points z ∈ D(0, 1). But |P (0)| = |z1| · |z2| . . . |zn| = 1,
which is a contradiction, and we must conclude that there exists a point z
on the unit circle such that |z − z1| · |z − z2| · · · |z − zn| = |P (z)| > 1.

Exercise 3.
a. Let z ∈ U and write z = x+ iy with x, y real. It follows that (Ref(z))2−
(Imf(z))2 = x and 2(Ref(z))(Imf(z)) = y. Since y 6= 0 we have Ref(z) 6= 0
and we may write

(Ref(z))2 −
(

y

2Ref(z)

)2

= x

We can write this as a quadratic equation:

((Ref(z))2)2 − x(Ref(z))2 − y2

4

It’s solutions are

(Ref(z))2 =
x±

√
x2 + y2

2
= ±|z| ± Re(z)

2
.

Since Ref(z) is a real number we must take the plus sign. Also we find that

(Imf(z))2 = (Ref(z))2 − x =
|z|+ Re(z)

2
− 2Re(z)

2
=
|z| − Re(z)

2
.

2
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We conclude that there exist α, β : U → {−1, 1} such that for all z ∈ U \ R

Ref(z) =
α(z)√

2

√
|z|+ Re(z) and Imf(z) =

β(z)√
2

√
|z| − Re(z)

b. Write u(x, y) = Ref(x + iy) and v(x, y) = Imf(x + iy). If the Cauchy
Riemann equations are satisfied in some point then we may at least assume
that α and β do not change sign in some open disc around that point. So

∂u

∂x
=
α(x+ iy)

2
√

2

(
x√

x2 + y2
+ 1

)
1√√

x2 + y2 + x
=
α(x+ iy)

2
√

2

√√
x2 + y2 + x√
x2 + y2

and

∂v

∂y
=
β(x+ iy)

2
√

2

y√
x2 + y2

1√√
x2 + y2 − x

=
y

|y|
β(x+ iy)

2
√

2

√√
x2 + y2 + x√
x2 + y2

and we must conclude that |y|α(x+ iy) = yβ(x+ iy).

c. Let us suppose f is analytic. C can be parametrized by a continuous
path γ. Then (Ref) ◦ γ is continuous so if α changes sign on C \ {−R} then
by the intermediate value theorem there should be a point z on C \ {−R}
such that Ref(z) = 0. Since this is not the case we must conclude that
α is constant on C \ {−R}. Analogously β is constant on C \ {R}. This
is impossible because the result of b. implies that α and β should have
the same sign on the part of the circle where Im(z) > 0 and opposite sign
on the part of the circle where Im(z) < 0. We conclude that f is not analytic.

Exercise 4. Denote by CR the circle with radius R centered at the origin
and let f(z) = ez. We can parametrize the circle by Reit with 0 ≤ t ≤ 2π.
We notice using Thm 7.3 that∫ 2π

0
eR cos(t) cos(R sin(t)− nt) dt = RnRe

(∫ 2π

0

eRe
it

(Reit)n+1
Reitdt

)

= RnRe

(
1

i

∮
CR

f(z)

zn+1
dz

)
= RnRe

(
2πf (n)(0)

n!

)
=

2πRn

n!
.
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Exercise 5. Let z0 ∈ D(0, ρ). Because D(0, ρ) is open we can find an r > 0
such that |z0|+ r < ρ. Now write z = z0 + (z − z0). Then by the binomial
formula we have

zn = (z0 + (z − z0))n =

n∑
k=0

(
n

k

)
zn−k0 (z − z0)k.

Now if |z − z0| < r we have |z0|+ |z − z0| < ρ. Thus

∞∑
n=0

|an|(|z0|+ |z − z0|)n =
∞∑
n=0

|an|

(
n∑
k=0

(
n

k

)
|z0|n−k|z − z0|k

)

converges. Since the convergence is absolute we may rearrange the terms to
conclude that

f(z) =
∞∑
k=0

( ∞∑
n=k

an

(
n

k

)
zn−k0

)
(z − z0)k

converges absolutely for |z − z0| < r. Thus f is analytic in z0. Since z0 was
arbitrary we conclude that f is analytic on D(0, ρ).
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