Docent: Yu.A. Kuznetsov
Assistants: L. Molag, W. Pranger, A. Witte

SOLUTIONS ENDTERM COMPLEX FUNCTIONS

JUNE 30 2015, 9:00-12:00

Exercise $1(10 \boldsymbol{p t})$: Let α, β, γ be three different complex numbers satisfying

$$
\frac{\beta-\alpha}{\gamma-\alpha}=\frac{\alpha-\gamma}{\beta-\gamma}
$$

Prove that the triangle with vertices $\{\alpha, \beta, \gamma\}$ is equilateral, i.e.

$$
|\beta-\alpha|=|\gamma-\alpha|=|\beta-\gamma|
$$

Solution 1: Both the property that α, β, γ are the vertices of an equilateral triangle and the property that they satisfy

$$
\frac{\beta-\alpha}{\gamma-\alpha}=\frac{\alpha-\gamma}{\beta-\gamma}
$$

are invariant under translations, therefore we may take $\alpha=0$ without loss of generality. Both properties are also invariant under rotations and rescaling (i.e. a multiplication by some complex number C). Therefore we may take $\gamma=1$ without loss of generality. We are then left with

$$
\beta=\frac{-1}{\beta-1} .
$$

This yields the quadratic equation $\beta^{2}-\beta+1=0$, which has the solutions $e^{\pi i / 3}$ and $e^{-\pi i / 3}$. Indeed $\left\{0,1, e^{ \pm \pi i / 3}\right\}$ defines an equilateral triangle.

Solution 2: The given equality implies that two angles (at α and γ) in the triangle are equal:

To see this, use the geometric interpretation of the division. Rewriting the equality as

$$
\frac{\beta-\gamma}{\alpha-\gamma}=\frac{\gamma-\alpha}{\beta-\alpha}
$$

shows that the angles at γ and α are also equal. So all angles are equal, implying that the triangle is equilateral.

Exercise $2\left(10\right.$ pt): Find all entire functions f such that $\left|f^{\prime}(z)\right|<|f(z)|$ for all $z \in \mathbb{C}$.

Let f be such a function. It follows from the strict inequality that f cannot have zeros. Therefore the function f^{\prime} / f is a well-defined entire function. In particular, it is bounded by 1 . By Liouville's theorem this implies that f^{\prime} / f is a constant function. Thus there exists a constant $c \in \mathbb{C}$ such that $f^{\prime}=c f$. Then we must conclude that $f(z)=b e^{c z}$, where $|c|<1$ and $b=f(0) \in \mathbb{C}$ is arbitrary.

Exercise 3 (15 pt): Consider the polynomial equation

$$
a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=0
$$

with real coefficients $a_{k} \in \mathbb{R}$ satisfying

$$
a_{0} \geq a_{1} \geq a_{2} \geq \cdots \geq a_{n}>0
$$

Prove that this equation has no roots with $|z|<1$.
Suppose z is a root of $a_{n} z^{n}+\ldots+a_{0}$ with $|z|<1$. Then it is also a root of $(z-1)\left(a_{n} z^{n}+\right.$ $\left.\ldots+a_{0}\right)=a_{n} z^{n+1}+\left(a_{n-1}-a_{n}\right) z^{n}+\ldots+\left(a_{0}-a_{1}\right) z-a_{0}$. But then we obtain the contradiction

$$
\begin{aligned}
a_{0} & =\left|a_{n} z^{n+1}+\left(a_{n-1}-a_{n}\right) z^{n}+\ldots+\left(a_{0}-a_{1}\right) z\right| \\
& \leq a_{n}|z|^{n+1}+\left(a_{n-1}-a_{n}\right)|z|^{n}+\ldots+\left(a_{0}-a_{1}\right)|z| \\
& \leq a_{n}|z|+\left(a_{n-1}-a_{n}\right)|z|+\ldots+\left(a_{0}-a_{1}\right)|z|=a_{0}|z|<a_{0} .
\end{aligned}
$$

We must conclude that all roots of $a_{n} z^{n}+\ldots+a_{0}$ have $|z| \geq 1$.
Remark: This approach is inspired by summation by parts. Define $a_{n+1}=0$ for convenience. Partial summation yields

$$
\begin{aligned}
a_{n} z^{n}+\ldots+a_{0} & =\sum_{k=0}^{n}\left(a_{k}-a_{k+1}\right)\left(z^{k}+z^{k-1}+\ldots+z+1\right) \\
& =\frac{1}{1-z} \sum_{k=0}^{n}\left(a_{k}-a_{k+1}\right)\left(z^{k+1}-1\right) .
\end{aligned}
$$

One can now get the idea to multiply the original polynomial by $z-1$, as is done in the above solution. Alternatively, one can notice that for any $|z|<1$

$$
\operatorname{Re}\left(\sum_{k=0}^{n}\left(a_{k}-a_{k+1}\right)\left(z^{k+1}-1\right)\right)=\sum_{k=0}^{n}\left|a_{k}-a_{k+1}\right| \operatorname{Re}\left(z^{k+1}-1\right)<0,
$$

impying that $\sum_{k=0}^{n}\left(a_{k}-a_{k+1}\right)\left(z^{k+1}-1\right)$, and hence $a_{n} z^{n}+\ldots+a_{0}$, cannot be 0 .
There is yet a different interpretation of the calculations before this remark: They basically show that

$$
\left|(z-1)\left(a_{n} z^{n}+\ldots+a_{0}\right)-\left(-a_{0}\right)\right|<\left|-a_{0}\right|
$$

on any circle $|z|=r<1$. It then follows from Rouché's theorem that $(z-1)\left(a_{n} z^{n}+\ldots+a_{0}\right)$, and thus $a_{n} z^{n}+\ldots+a_{0}$, has no roots with $|z|<1$.

Exercise 4 (20 pt): Let f be a meromorphic function on \mathbb{C}. Suppose there exist $C, R>0$ and integer $n \geq 1$ such that $|f(z)| \leq C|z|^{n}$ for all $z \in \mathbb{C}$ with $|z| \geq R$.
a. (10 pt) Prove that the number of poles of f in \mathbb{C} is finite.

We exclude the trivial case $f=0$. First we prove that f cannot attain infinitely many zeros in the disc $|z| \leq R$, a result we will need later. So suppose f has infinitely many zeros in this disc. Of course this allows us to find a sequence of zeros of f in $|z| \leq D$. Then by compactness of the disc there exists a convergent subsequence with some limit p in $|z| \leq D$. By continuity p must also be a zero of f (it cannot have a pole there, this is because in some neighborhood of p we would then have $|f(z)| \geq C|z-p|^{-m}$ for some positive numbers C and m). However, p is then an accumulation point of a sequence of zero's of f, thus (by Theorem 3.2b, p . 62) f has a power series equal to 0 in a neighborhood of p. By analytic continuation $f=0$, a contradiction. We must conclude that f has only finitely many zeros.
Now suppose f has infinitely many poles. By the same reasoning as above we can find a convergent sequence of poles of f converging to some limit q. Suppose f has a zero of multiplicity $m \geq 0$ in $z=q$. Then $(z-q)^{m} / f$ extends to an analytic function in some neighborhood of q, using the fact that f has only finitely many zeros. Exactly analogous to the above this leads to a contradiction. Thus we conclude that f has only finitely many poles in $|z| \leq R$. By the inequality $|f(z)| \leq C|z|^{n}$ we know that f cannot have poles for $|z|>R$.
b. (10 pt) Prove that f is a rational function, i.e. it can be written as a ratio of two polynomials.

Let P be a polynomial containing all the poles (counted with multiplicity) of f. Then $P f$ extends to an entire function g that satisfies $|g(z)| \leq C|z|^{N}$ for some number N (the sum of the orders of the poles minus n). Then, for $k>N$ we have using the generalization of Cauchy's Integral Formula that

$$
\left|g^{(k)}(0)\right|=\left|\frac{k!}{2 \pi i} \int_{|z|=r} \frac{g(z)}{z^{k+1}} d z\right| \leq \frac{k!C r^{N} 2 \pi r}{r^{k+1}}=2 \pi k!C r^{N-k}
$$

for any $r>R$. Thus we see, by taking the limit $r \rightarrow \infty$, that all coefficients of f vanish for $k>N$, i.e. g is a polynomial. This implies that f is a rational function.

Exercise 5 (25 pt): Let $a>0$. By integrating the function

$$
f(z)=\frac{1}{z} \frac{1}{\cos (2 \pi i a)-\cos (2 \pi z)}
$$

over a suitable closed path, show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{a^{2}+n^{2}}=\frac{\pi}{a} \frac{e^{2 \pi a}-e^{-2 \pi a}}{e^{2 \pi a}+e^{-2 \pi a}-2}
$$

Hint: Use a square path.
Take the square with vertices $\pm m \pm i m$, with m an odd natural number divided by 2 . On both its horizontal edges, $t \pm i m$, we have

$$
|\cos (2 \pi i a)-\cos (2 \pi z) \| z|=\left|\frac{1}{2} e^{2 \pi m} e^{ \pm 2 \pi i t}+\ldots\right||z| \geq C m e^{2 \pi m}
$$

for some constant C. Thus the absolute value of these integrals is smaller than or equal to $2 m /\left(C m e^{2 \pi m}\right)=2 / C \cdot e^{-2 \pi m}$, which converges to 0 as $m \rightarrow \infty$.
For the right vertical edge, $m+i m t$, the corresponding integral equals

$$
\int_{-1}^{1} \frac{1}{\cosh (2 \pi a)+\cosh (2 \pi m t)} \frac{i d t}{1+i t}
$$

For every $\epsilon>0$ we have

$$
\lim _{m \rightarrow \infty}\left|\int_{\epsilon}^{1} \frac{1}{\cosh (2 \pi a)+\cosh (2 \pi m t)} \frac{i d t}{1+i t}\right| \leq \lim _{m \rightarrow \infty} \frac{1}{\cosh (2 \pi a)+\cosh (2 \pi m \epsilon)} \frac{1}{\sqrt{1+\epsilon^{2}}}=0
$$

This is of course also true for the part from -1 to ϵ. For the middle part we have

$$
\left|\int_{-\epsilon}^{\epsilon} \frac{1}{\cosh (2 \pi a)+\cosh (2 \pi m t)} \frac{i d t}{1+i t}\right| \leq \frac{2 \epsilon}{\cosh (2 \pi a)+1}
$$

We must conclude that

$$
\lim _{m \rightarrow \infty}\left|\int_{-1}^{1} \frac{1}{\cosh (2 \pi a)+\cosh (2 \pi m t)} \frac{i d t}{1+i t}\right| \leq \frac{2 \epsilon}{\cosh (2 \pi a)+1}<\epsilon
$$

for any $\epsilon>0$, hence the right vertical integral tends to 0 as $m \rightarrow \infty$. The case of the left vertical integral is analogous.
We are now left with the residue at 0 and the residues at $\pm i a+n$. By the Residue Formula we get

$$
\begin{aligned}
\frac{1}{\cosh (2 \pi a)-1} & =\sum_{n=-\infty}^{\infty}\left(\frac{1}{2 \pi \sin (2 \pi(i a+n))} \frac{1}{i a+n}+\frac{1}{2 \pi \sin (2 \pi(-i a+n))} \frac{1}{-i a+n}\right) \\
& =\frac{1}{-2 \pi i \sinh (2 \pi a)} \sum_{n=-\infty}^{\infty} \frac{-i a+n-(i a+n)}{a^{2}+n^{2}} \\
& =\frac{a}{\pi \sinh (2 \pi a)} \sum_{n=-\infty}^{\infty} \frac{1}{a^{2}+n^{2}}
\end{aligned}
$$

This implies that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{a^{2}+n^{2}}=\frac{\pi}{a} \frac{\sinh (2 \pi a)}{\cosh (2 \pi a)-1}=\frac{\pi}{a} \frac{e^{2 \pi a}-e^{-2 \pi a}}{e^{2 \pi a}+e^{-2 \pi a}-2}
$$

Bonus Exercise (20 pt): Find all entire functions f such that

$$
f\left(z^{2}\right)=(f(z))^{2}
$$

for all $z \in \mathbb{C}$.
Solution 1: Suppose f is not identically zero. We can write $f(z)=z^{m} g(z)$ for some analytic function g with $g(0) \neq 0$. We notice that g must also satisfy $g\left(z^{2}\right)=g(z)^{2}$. For all z in the unit disc we have

$$
0 \neq|g(0)|=\lim _{n \rightarrow \infty}\left|g\left(z^{2^{n}}\right)\right|=\lim _{n \rightarrow \infty}|g(z)|^{2^{n}} .
$$

This limit can only exist and not be equal to 1 if $|g(z)|=1$ for all z in the unit disc. By the maximum modulus principle this implies that g is constant. In fact $g(0)=g(0)^{2}$, so we must conclude that $g=1$. We conclude that the full solution set is given by $f=0$ and $f(z)=z^{m}, m$ a non-negative integer.

Solution 2: Again we write $f(z)=z^{m} g(z)$. When $e^{i \phi}$ is a maximum for g on the closed unit disc, so is $e^{i \phi / 2}$. Thus the sequence $\left(e^{i \phi \cdot 2^{-n}}\right)_{n}$ yields maxima of g. By continuity of $|g|$ a maximum must also be attained in $z=1$. We know that $g(0)=g(0)^{2}$ and $g(1)=g(1)^{2}$. The only possibillity is $g(0)=g(1)=1$. By the maximum modulus principle g is identically one.

Solution 3: Again we write $f(z)=z^{m} g(z)$. Since $g(0) \neq 0$ we can find an open ball on which g is non-zero. On this open ball we can define the analytic function

$$
h_{n}(z)=\exp \left(\frac{1}{2^{2^{n}}} \int_{0}^{z} \frac{g^{\prime}(\zeta)}{g(\zeta)} d \zeta\right)
$$

as is done on p.123. We notice (by induction) that

$$
g(z)=h_{n}\left(z^{2^{n}}\right)=f(0)+\frac{g^{\left(2^{n}\right)}(0)}{\left(2^{n}\right)!} z^{2^{n}}+\ldots
$$

for all n. This implies that g cannot have a term of smallest positive power in its power series expansion, i.e. it is constant.

