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Exercise 1 (10 pt): Let α, β, γ be three different complex numbers satis-
fying

β − α
γ − α =

α− γ
β − γ .

Prove that the triangle with vertices {α, β, γ} is equilateral, i.e.

|β − α| = |γ − α| = |β − γ|.

Solution 1: Both the property that α, β, γ are the vertices of an equilateral triangle and
the property that they satisfy

β − α
γ − α =

α− γ
β − γ

are invariant under translations, therefore we may take α = 0 without loss of generality.
Both properties are also invariant under rotations and rescaling (i.e. a multiplication by
some complex number C). Therefore we may take γ = 1 without loss of generality. We
are then left with

β =
−1

β − 1
.

This yields the quadratic equation β2 − β + 1 = 0, which has the solutions eπi/3 and
e−πi/3. Indeed {0, 1, e±πi/3} defines an equilateral triangle.

Solution 2: The given equality implies that two angles (at α and γ) in the triangle are
equal:

β − γ

γ − α
β

α

γ

β − α

To see this, use the geometric interpretation of the division. Rewriting the equality as

β − γ
α− γ =

γ − α
β − α

shows that the angles at γ and α are also equal. So all angles are equal, implying that the

triangle is equilateral.
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Exercise 2 (10 pt): Find all entire functions f such that |f ′(z)| < |f(z)|
for all z ∈ C.

Let f be such a function. It follows from the strict inequality that f cannot have zeros.

Therefore the function f ′/f is a well-defined entire function. In particular, it is bounded

by 1. By Liouville’s theorem this implies that f ′/f is a constant function. Thus there

exists a constant c ∈ C such that f ′ = cf . Then we must conclude that f(z) = becz, where

|c| < 1 and b = f(0) ∈ C is arbitrary.

Exercise 3 (15 pt): Consider the polynomial equation

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0

with real coefficients ak ∈ R satisfying

a0 ≥ a1 ≥ a2 ≥ · · · ≥ an > 0 .

Prove that this equation has no roots with |z| < 1.

Suppose z is a root of anz
n+ . . .+a0 with |z| < 1. Then it is also a root of (z−1)(anz

n+
. . . + a0) = anz

n+1 + (an−1 − an)zn + . . . + (a0 − a1)z − a0. But then we obtain the
contradiction

a0 = |anzn+1 + (an−1 − an)zn + . . .+ (a0 − a1)z|

≤ an|z|n+1 + (an−1 − an)|z|n + . . .+ (a0 − a1)|z|
≤ an|z|+ (an−1 − an)|z|+ . . .+ (a0 − a1)|z| = a0|z| < a0.

We must conclude that all roots of anz
n + . . .+ a0 have |z| ≥ 1.

Remark: This approach is inspired by summation by parts. Define an+1 = 0 for conve-
nience. Partial summation yields

anz
n + . . .+ a0 =

n∑
k=0

(ak − ak+1)(zk + zk−1 + . . .+ z + 1)

=
1

1− z

n∑
k=0

(ak − ak+1)(zk+1 − 1).

One can now get the idea to multiply the original polynomial by z − 1, as is done in the
above solution. Alternatively, one can notice that for any |z| < 1

Re

(
n∑
k=0

(ak − ak+1)(zk+1 − 1)

)
=

n∑
k=0

|ak − ak+1|Re(zk+1 − 1) < 0,

impying that
∑n
k=0(ak − ak+1)(zk+1 − 1), and hence anz

n + . . .+ a0, cannot be 0.

There is yet a different interpretation of the calculations before this remark: They basically
show that

|(z − 1)(anz
n + . . .+ a0)− (−a0)| < | − a0|
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on any circle |z| = r < 1. It then follows from Rouché’s theorem that (z−1)(anz
n+. . .+a0),

and thus anz
n + . . .+ a0, has no roots with |z| < 1.

Exercise 4 (20 pt): Let f be a meromorphic function on C. Suppose there
exist C,R > 0 and integer n ≥ 1 such that |f(z)| ≤ C|z|n for all z ∈ C with
|z| ≥ R.

a. (10 pt) Prove that the number of poles of f in C is finite.

We exclude the trivial case f = 0. First we prove that f cannot attain infinitely

many zeros in the disc |z| ≤ R, a result we will need later. So suppose f has

infinitely many zeros in this disc. Of course this allows us to find a sequence of

zeros of f in |z| ≤ D. Then by compactness of the disc there exists a convergent

subsequence with some limit p in |z| ≤ D. By continuity p must also be a zero of

f (it cannot have a pole there, this is because in some neighborhood of p we would

then have |f(z)| ≥ C|z− p|−m for some positive numbers C and m). However, p is

then an accumulation point of a sequence of zero’s of f , thus (by Theorem 3.2b, p.

62) f has a power series equal to 0 in a neighborhood of p. By analytic continuation

f = 0, a contradiction. We must conclude that f has only finitely many zeros.

Now suppose f has infinitely many poles. By the same reasoning as above we

can find a convergent sequence of poles of f converging to some limit q. Suppose

f has a zero of multiplicity m ≥ 0 in z = q. Then (z − q)m/f extends to an

analytic function in some neighborhood of q, using the fact that f has only finitely

many zeros. Exactly analogous to the above this leads to a contradiction. Thus

we conclude that f has only finitely many poles in |z| ≤ R. By the inequality

|f(z)| ≤ C|z|n we know that f cannot have poles for |z| > R.

b. (10 pt) Prove that f is a rational function, i.e. it can be written as a
ratio of two polynomials.

Let P be a polynomial containing all the poles (counted with multiplicity) of f .
Then Pf extends to an entire function g that satisfies |g(z)| ≤ C|z|N for some
number N (the sum of the orders of the poles minus n). Then, for k > N we have
using the generalization of Cauchy’s Integral Formula that

|g(k)(0)| =

∣∣∣∣∣ k!

2πi

∫
|z|=r

g(z)

zk+1
dz

∣∣∣∣∣ ≤ k!CrN2πr

rk+1
= 2πk!CrN−k

for any r > R. Thus we see, by taking the limit r → ∞, that all coefficients of f

vanish for k > N , i.e. g is a polynomial. This implies that f is a rational function.

Exercise 5 (25 pt): Let a > 0. By integrating the function

f(z) =
1

z

1

cos(2πia)− cos(2πz)
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over a suitable closed path, show that

∞∑
n=−∞

1

a2 + n2
=
π

a

e2πa − e−2πa
e2πa + e−2πa − 2

.

Hint : Use a square path.

Take the square with vertices ±m± im, with m an odd natural number divided by 2. On
both its horizontal edges, t± im, we have

| cos(2πia)− cos(2πz)||z| = |1
2
e2πme±2πit + . . . ||z| ≥ Cme2πm

for some constant C. Thus the absolute value of these integrals is smaller than or equal
to 2m/(Cme2πm) = 2/C · e−2πm, which converges to 0 as m→∞.
For the right vertical edge, m+ imt, the corresponding integral equals∫ 1

−1

1

cosh(2πa) + cosh(2πmt)

idt

1 + it

For every ε > 0 we have

lim
m→∞

∣∣∣∣∫ 1

ε

1

cosh(2πa) + cosh(2πmt)

idt

1 + it

∣∣∣∣ ≤ lim
m→∞

1

cosh(2πa) + cosh(2πmε)

1√
1 + ε2

= 0

This is of course also true for the part from −1 to ε. For the middle part we have∣∣∣∣∫ ε

−ε

1

cosh(2πa) + cosh(2πmt)

idt

1 + it

∣∣∣∣ ≤ 2ε

cosh(2πa) + 1

We must conclude that

lim
m→∞

∣∣∣∣∫ 1

−1

1

cosh(2πa) + cosh(2πmt)

idt

1 + it

∣∣∣∣ ≤ 2ε

cosh(2πa) + 1
< ε

for any ε > 0, hence the right vertical integral tends to 0 as m→∞. The case of the left
vertical integral is analogous.
We are now left with the residue at 0 and the residues at ±ia+n. By the Residue Formula
we get

1

cosh(2πa)− 1
=

∞∑
n=−∞

(
1

2π sin(2π(ia+ n))

1

ia+ n
+

1

2π sin(2π(−ia+ n))

1

−ia+ n

)

=
1

−2πi sinh(2πa)

∞∑
n=−∞

−ia+ n− (ia+ n)

a2 + n2

=
a

π sinh(2πa)

∞∑
n=−∞

1

a2 + n2

This implies that

∞∑
n=−∞

1

a2 + n2
=
π

a

sinh(2πa)

cosh(2πa)− 1
=
π

a

e2πa − e−2πa

e2πa + e−2πa − 2
.
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Bonus Exercise (20 pt): Find all entire functions f such that

f(z2) = (f(z))2

for all z ∈ C.

Solution 1: Suppose f is not identically zero. We can write f(z) = zmg(z) for some
analytic function g with g(0) 6= 0. We notice that g must also satisfy g(z2) = g(z)2. For
all z in the unit disc we have

0 6= |g(0)| = lim
n→∞

|g(z2
n

)| = lim
n→∞

|g(z)|2
n

.

This limit can only exist and not be equal to 1 if |g(z)| = 1 for all z in the unit disc. By
the maximum modulus principle this implies that g is constant. In fact g(0) = g(0)2, so
we must conclude that g = 1. We conclude that the full solution set is given by f = 0 and
f(z) = zm, m a non-negative integer.

Solution 2: Again we write f(z) = zmg(z). When eiφ is a maximum for g on the

closed unit disc, so is eiφ/2. Thus the sequence (eiφ·2
−n

)n yields maxima of g. By con-
tinuity of |g| a maximum must also be attained in z = 1. We know that g(0) = g(0)2

and g(1) = g(1)2. The only possibillity is g(0) = g(1) = 1. By the maximum modulus
principle g is identically one.

Solution 3: Again we write f(z) = zmg(z). Since g(0) 6= 0 we can find an open ball on
which g is non-zero. On this open ball we can define the analytic function

hn(z) = exp

(
1

22n

∫ z

0

g′(ζ)

g(ζ)
dζ

)
as is done on p.123. We notice (by induction) that

g(z) = hn(z2
n

) = f(0) +
g(2

n)(0)

(2n)!
z2

n

+ . . .

for all n. This implies that g cannot have a term of smallest positive power in its power

series expansion, i.e. it is constant.
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