ENDTERM COMPLEX FUNCTIONS

JUNE 28, 2016, 8:30-11:30

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.

Exercise 1 (10 pt): Determine all entire functions f such that

$$
(f(z))^{2}+\left(f^{\prime}(z)\right)^{2}=1
$$

for all $z \in \mathbb{C}$.

Exercise $2(10$ pt):

a. (5 pt) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a doubly periodic function, i.e., there exist $x_{1}, x_{2} \in \mathbb{C}^{*}$, no real multiples of each other, such that

$$
f(z)=f\left(z+x_{1}\right)=f\left(z+x_{2}\right)
$$

for all $z \in \mathbb{C}$. Suppose that f is analytic. Show that f is constant.
b. (5 pt) Determine all entire functions f such that the identities

$$
f(z+1)=i f(z) \quad \text { and } \quad f(z+i)=-f(z)
$$

hold for all $z \in \mathbb{C}$.

Exercise 3 (20 pt):
Prove that the following integrals converge and evaluate them.
a. $(10 p t) \int_{0}^{\infty} \frac{1}{\left(x^{2}-e^{\pi i / 3}\right)^{2}} d x$
b. (10 pt) $\int_{0}^{\infty} \frac{x-\sin x}{x^{3}} d x$

Exercise $4(10 p t):$ Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by:

$$
f(z)= \begin{cases}e^{-\frac{1}{z^{4}}} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

a. (5 pt) Show that f satisfies the Cauchy-Riemann equations on the whole of \mathbb{C}.
b. (5 pt) Is f analytic? Motivate your answer.

Exercise 5 (10 pt):

Let f be an entire function that sends the real axis to the real axis and the imaginary axis to the imaginary axis. Show that f is an odd function.

Exercise 6 (20 pt):

Let $U \subseteq \mathbb{C}$ be a connected open set. Let $\left\{f_{n}\right\}$ be a sequence of complex functions on U which converges uniformly on every compact subset of U to the limit function f. (I.e., for every compact subset K of $U,\left\{f_{n} \mid K\right\}$ converges uniformly on K to $f \mid K$.)
a. (5 pt) Give an example where the f_{n} are injective and holomorphic, but f is constant.
b. (5 pt) Give an example where the f_{n} are injective and (real) differentiable, but f is neither constant nor injective.
Hint: When is $z \mapsto z+a \bar{z}$ injective? Holomorphic?
c. (10 pt) Prove: if the f_{n} are injective and holomorphic, then f is either constant or injective.
Hint 1: Reduce the problem to the following special case: If $f\left(z_{0}\right)=$ $f\left(z_{1}\right)=0$, with $z_{0} \neq z_{1}$, and $f_{n}\left(z_{0}\right)=0$ for all n, then $f \equiv 0$.
Hint 2: Now look at the orders of f and the f_{n} at z_{1}.

