SOLUTIONS ENDTERM COMPLEX FUNCTIONS

JUNE 28, 2018, 13:30-16:30

Exercise 1 (15 pt):

Prove that the following integral converges and evaluate it.

$$
\int_{0}^{\infty} \frac{\cos \left(\frac{\pi}{2} x\right)}{x^{2}-1} d x
$$

(Hint: Use a contour consisting of three semicircles and three segments.)
Solution. The integrand extends continuously to $x=1$. For $x>2$, the integrand is bounded in absolute value by $2 / x^{2}$, so the integral converges. In order to use the residue method, we consider $f(z)=\exp (\pi i z / 2) /\left(z^{2}-1\right)$, with simple poles at 1 and -1. Note that $\int_{-b}^{-a} f(z) d z=[z=-x, d z=-d x]=\int_{a}^{b} \exp (-\pi i x / 2) /\left(x^{2}-1\right) d x$, so $\int_{-b}^{-a} f(z) d z+\int_{a}^{b} f(z) d z=2 \int_{a}^{b} \cos (\pi x / 2) /\left(x^{2}-1\right) d x$ for $b>a>1$ and also for $0=a<b<1$. We integrate $f(z)$ therefore over a contour in the closed upper half plane consisting of a semicircle S_{R} of radius $R>2$ around 0 , semicircles S_{ε} and T_{ε} of radius ε with $0<\varepsilon<1$ around -1 and +1 respectively, and segments from $-R$ to $-1-\varepsilon$, from $-1+\varepsilon$ to $1-\varepsilon$, and from $1+\varepsilon$ to R. The integral is zero. Let $R \rightarrow \infty$ and $\varepsilon \rightarrow 0$. The integral over S_{R} is bounded in absolute value by $2 \pi R / R^{2}$ and goes to zero. Let us give S_{ε} and T_{ε} the clockwise orientation. When $\varepsilon \rightarrow 0$, the integral over S_{ε} approaches $-\pi i \operatorname{Res}_{-1} f$ and that over T_{ε} approaches $-\pi i \operatorname{Res}_{1} f$. Their sum goes to $-\pi i\left(e^{\pi i / 2}-e^{-\pi i / 2}\right) / 2=\pi \sin (\pi / 2)=\pi$. As mentioned, the sum of the integrals over the segments goes to twice the desired integral. We conclude that

$$
\int_{0}^{\infty} \frac{\cos \left(\frac{\pi}{2} x\right)}{x^{2}-1} d x=-\frac{\pi}{2}
$$

Exercise $2(15 p t)$:

Determine the fractional linear transformations F that map \mathbb{R} to \mathbb{R} and the unit circle to the unit circle. (As you know, the domain of F equals either \mathbb{C} or the complement of exactly one point. The precise meaning of the above is that F maps the real points in its domain to \mathbb{R}, and the points on the unit circle in its domain to the unit circle.)

Solution. We know that there exist a, b, c, and $d \in \mathbb{C}$ with $a d-b c \neq 0$ such that $F(z)=(a z+b) /(c z+d)$ for all z in the domain. When $c=0$, the domain is \mathbb{C}, otherwise it is $\mathbb{C} \backslash\{-d / c\}$. Analogously, the image is either \mathbb{C} or $\mathbb{C} \backslash\{a / c\}$. We also know that F gives a bijection from its domain to its image. In case $c \neq 0$: when $z \rightarrow-d / c$, then $F(z) \rightarrow \infty$. It follows that the domain of F contains the unit circle. In particular, F is defined at 1 and -1 . Moreover, F preserves $\{1,-1\}$, the intersection of the real line and the unit circle. Let $z \rightarrow \infty$ along the real line; it follows that $c=0$ or a / c is real. Assume first that $F(1)=1$ and $F(-1)=-1$. Then $a+b=c+d$ and $-a+b=c-d$, so $b=c$ and $a=d$ and $a^{2} \neq b^{2}$. If $a=0$, then $F(z)=1 / z$, preserving the unit circle and $\mathbb{R} \backslash\{0\}$. Otherwise, we can take $a=1$ and $F(z)=(z+b) /(b z+1)$, with b real. Clearly, F maps the real points in its domain to real points. When $|z|=1$, then $|b z+1|=|b+1 / z|=|b+\bar{z}|=|b+z|$, so $|F(z)|=1$ and F preserves the unit circle.
Next, if $F(1)=-1$ and $F(1)=-1$, then $F(-z)($ or $-F(z))$ gives a fractional linear transformation that fixes 1 and -1 , preserves the unit circle and maps real points to real points. So it is of the form above. Conclusion: $F(z)= \pm(1 / z)$ or $F(z)= \pm(z+b) /(b z+1)$ for b real, $b^{2} \neq 1$, are precisely the fractional linear transformations asked for.

Exercise 3 (15 pt):

Let $U \subseteq \mathbb{C}$ be a nonempty open and connected set. A function $f: U \rightarrow \mathbb{C}$ is distance preserving when $|f(z)-f(w)|=|z-w|$ for all z and w in U. Determine (with proof) the distance preserving holomorphic functions on U. (State the theorems (or their names) that you use. As mentioned above: when you use a theorem, show that the conditions are met.)

Solution. Assume that $f: U \rightarrow \mathbb{C}$ is holomorphic and distance preserving. We know that the derivative of f exists. Also, $f^{\prime}(z)=\lim _{w \rightarrow z} \frac{f(z)-f(w)}{z-w}$, so we find that $\left|f^{\prime}(z)\right|=1$ for all $z \in U$. Since f is analytic on U, we have that f^{\prime} is analytic as well. But its image is contained in the unit circle, so the open mapping theorem tells us that f^{\prime} is locally constant, hence constant, since U is connected. So f^{\prime} is constant, of absolute value 1 , hence there exist a and b in \mathbb{C} with $|a|=1$ such that $f(z)=a z+b$ for all $z \in U$ (again using the connectedness: if $f^{\prime} \equiv a$, then $f(z)-a z$ has zero derivative, hence is constant on U). Since f is a rotation followed by a translation, it is distance preserving.

Exercise 4 (15 pt):

Let $S \subset \mathbb{C}$ be a closed set that is discrete (i.e., every point of S is isolated). Let $U \subseteq \mathbb{C}$ be the complement of S. Prove that a holomorphic function f from U to the upper half plane H is necessarily constant.

Solution. We know that H and the open unit disc D are analytically isomorphic; let $g: H \rightarrow D$ be an analytic isomorphism. Then $g \circ f: U \rightarrow D$ is analytic and bounded. At each point s of S, the function $g \circ f$ has an isolated singularity, but since $g \circ f$ is bounded in a punctured neighbourhood of s, the singularity is a removable one. So $g \circ f$ extends to a holomorphic function h from \mathbb{C} to \bar{D}. Then h is entire and bounded, so
constant by Liouville's theorem. Then $g \circ f$ and f are constant as well (with image one point in D resp. H).

Exercise 5 (15 pt):

Let f be an entire function that is not a polynomial. Show that for every $c \in \mathbb{C}$ there exists an unbounded sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ such that $f\left(z_{n}\right) \rightarrow c$ as $n \rightarrow \infty$.

Solution. As f is entire, we can write f as

$$
f(z)=\sum a_{n} z^{n} .
$$

We set $g(z):=f\left(\frac{1}{z}\right)$ and, because f is not a polynomial, we observe that g has an essential singularity at 0 . Pick a point $c \in \mathbb{C}$. Then by the Casorati-Weierstrass Theorem, given an $\varepsilon>0$, we can find in any punctured neighbourhood V of 0 a point $w \in V$ such that $|g(w)-c|<\varepsilon$. We use this fact to construct our sequence.
Let $n \in \mathbb{N}$ and pick a point $w_{n} \in D\left(0, \frac{1}{n}\right)\left(\right.$ with $\left.w_{n} \neq 0\right)$ such that $\left|g\left(w_{n}\right)-c\right|<\frac{1}{n}$. Then we define $z_{n}=\frac{1}{w_{n}}$, so that $f\left(z_{n}\right) \rightarrow c$ as $n \rightarrow \infty$ by construction; clearly, $\left(z_{n}\right)_{n \in \mathbb{N}}^{n}$ is unbounded.

Exercise 6 (15 pt):

Prove that the following integral converges and evaluate it.

$$
\int_{0}^{\infty} \frac{(\log x)^{2}}{x^{2}+1} d x
$$

(Hint: Use a contour consisting of two semicircles and two segments. Use an appropriate definition of the complex logarithm.)

Solution. Convergence near ∞ is essentially obvious, e.g., since $x^{-3 / 2}$ bounds the integrand. Convergence near 0 follows from partial integration, since the limits of $x(\log x)^{2}$ and $x \log x$ as $x \rightarrow 0$ exist (and are 0). Let $f(z)=(\log z)^{2} /\left(z^{2}+1\right)$, where we take the (branch of the) complex logarithm on $\mathbb{C} \backslash i \mathbb{R}_{\leq 0}$ that continues $\log x$ for $x>0$, i.e., for $z=r \exp (i \phi)$ with $r>0$ and $-\pi / 2<\phi<3 \pi / 2$ we have $\log z=\log r+i \phi$. Take a contour in the closed upper half plane consisting of the semicircle S_{R} around 0 of radius $R>2$, the semicircle S_{ε} around 0 of radius ε with $0<\varepsilon<1 / 2$, and segments from $-R$ to $-\varepsilon$ and from ε to R. The only pole of f inside the contour is at $z=i$; it is simple, with residue equal to $-\left(\pi^{2} / 4\right) /(2 i)$ (since $\left.\log i=i \pi / 2\right)$, so the integral of f over the contour equals $-\pi^{3} / 4$. Note that $\int_{-R}^{-\varepsilon} f(z) d z=[z=-x, d z=-d x, \log z=$ $\log x+i \pi]=\int_{\varepsilon}^{R}(\log x+i \pi)^{2} /\left(x^{2}+1\right) d x$. Let $R \rightarrow \infty$ and $\varepsilon \rightarrow 0$. The integral over S_{R} is bounded in absolute value by $\pi R(\log R+\pi)^{2} /\left(R^{2}-1\right)$ and goes to 0 as $R \rightarrow \infty$. The integral over S_{ε} is bounded in absolute value by $\pi \varepsilon(|\log \varepsilon|+\pi)^{2} /(3 / 4)$ and also goes to 0 as $\varepsilon \rightarrow 0$. Taking the real part, we find that

$$
2 \int_{0}^{\infty} \frac{(\log x)^{2}}{x^{2}+1} d x-\pi^{2} \int_{0}^{\infty} \frac{d x}{x^{2}+1}=-\frac{\pi^{3}}{4} .
$$

But we know that $\int_{0}^{\infty} \frac{d x}{x^{2}+1}=\pi / 2$, so we find the answer

$$
\int_{0}^{\infty} \frac{(\log x)^{2}}{x^{2}+1} d x=\frac{\pi^{3}}{8}
$$

(Taking the imaginary part, we find that $\int_{0}^{\infty} \frac{\log x}{x^{2}+1} d x=0$; we can also obtain this by integration over the same contour, or by a simple substitution. Needless to say, $\int_{0}^{\infty} \frac{d x}{x^{2}+1}=\pi / 2$ can also be obtained by contour integration.)

