Measure and Integration: Quiz 2015-16

1. Consider the measure space $([0,1), \mathcal{B}([0,1)), \lambda)$, where $\mathcal{B}([0,1))$ is the Borel σ algebra restricted to [0,1) and λ is the restriction of Lebesgue measure on [0,1). Define the transformation $T: [0,1) \to [0,1)$ given by

$$T(x) = \begin{cases} 3x & 0 \le x < 1/3, \\ \frac{3}{2}x - \frac{1}{2}, & 1/3 \le x < 1. \end{cases}$$

- (a) Show that T is $\mathcal{B}([0,1))/\mathcal{B}([0,1))$ measurable, and determine the image measure $T(\lambda) = \lambda \circ T^{-1}$. (1 pt.)
- (b) Let $C = \{A \in \mathcal{B}([0,1)) : \lambda(T^{-1}A\Delta A) = 0\}$. Show that C is a σ -algebra. (Note that $T^{-1}A\Delta A = (T^{-1}A \setminus A) \cup (A \setminus T^{-1}A)$). (1 pt.)
- (c) Suppose $A \in \mathcal{B}([0, 1))$ satisfies the property that $T^{-1}(A) = A$ and $0 < \lambda(A) < 1$. Define μ_1, μ_2 on $\mathcal{B}([0, 1))$ by

$$\mu_1(B) = \frac{\lambda(A \cap B)}{\lambda(A)}$$
, and $\mu_2(B) = \frac{\lambda(A^c \cap B)}{\lambda(A^c)}$.

Show that μ_1, μ_2 are measures on $\mathcal{B}([0, 1))$ satisfying

- (i) $T(\mu_i) = \mu_i, \ i = 1, 2,$
- (ii) $\lambda = \alpha \mu_1 + (1 \alpha) \mu_2$ for an appropriate $0 < \alpha < 1$. (1.5 pts.)
- 2. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra over \mathbb{R} , and λ is Lebesgue measure. Define f on \mathbb{R} by $f(x) = 2x \mathbf{1}_{[0,1)}(x)$.
 - (a) Show that f is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. (1 pt.)
 - (b) Find a sequence (f_n) in \mathcal{E}^+ such that $f_n \nearrow f$. (1 pt.)
 - (c) Determine the value of $\int f d\mu$ using only the material of Chapter 9. (1 pt.)
 - (d) Let $C = \sigma(\{\{x\} : x \in [0, 1)\})$ and $\mathcal{A} = \{A \subseteq [0, 2) : A \text{ is countable or } A^c \text{ is countable}\}.$ Show that f is C/\mathcal{A} measurable and $C = \mathcal{A} \cap [0, 1)$. (Here we are seeing f as a function defined on [0, 1)) (1 pt.)
- 3. Consider the measure space $([0, 1]\mathcal{B}([0, 1]), \lambda)$, where λ is the restriction of Lebesgue measure to [0, 1], and let $A \in \mathcal{B}([0, 1])$ be such that $\lambda(A) = 1/2$. Consider the real function f defined on [0, 1] by $f(x) = \lambda (A \cap [0, x])$.
 - (a) Show that for any $x, y \in [0, 1]$, we have

$$|f(x) - f(y)| \le |x - y|.$$

Conclude that f is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. (1 pt.)

(b) Show that for any $\alpha \in (0, 1/2)$, there exists $A_{\alpha} \subset A$ with $A_{\alpha} \in \mathcal{B}([0, 1])$ and $\lambda(A_{\alpha}) = \alpha$. (1.5 pts.)