Measure and Integration: Solution Quiz 2015-16

1. Consider the measure space $([0,1), \mathcal{B}([0,1)), \lambda)$, where $\mathcal{B}([0,1))$ is the Borel σ algebra restricted to [0,1) and λ is the restriction of Lebesgue measure on [0,1). Define the transformation $T: [0,1) \to [0,1)$ given by

$$T(x) = \begin{cases} 3x & 0 \le x < 1/3, \\ \frac{3}{2}x - \frac{1}{2}, & 1/3 \le x < 1. \end{cases}$$

- (a) Show that T is $\mathcal{B}([0,1))/\mathcal{B}([0,1))$ measurable, and determine the image measure $T(\lambda) = \lambda \circ T^{-1}$. (1 pt.)
- (b) Let $\mathcal{C} = \{A \in \mathcal{B}([0,1)) : \lambda(T^{-1}A\Delta A) = 0\}$. Show that \mathcal{C} is a σ -algebra. (Note that $T^{-1}A\Delta A = (T^{-1}A \setminus A) \cup (A \setminus T^{-1}A)$). (1 pt.)
- (c) Suppose $A \in \mathcal{B}([0, 1))$ satisfies the property that $T^{-1}(A) = A$ and $0 < \lambda(A) < 1$. Define μ_1, μ_2 on $\mathcal{B}([0, 1))$ by

$$\mu_1(B) = \frac{\lambda(A \cap B)}{\lambda(A)}$$
, and $\mu_2(B) = \frac{\lambda(A^c \cap B)}{\lambda(A^c)}$.

Show that μ_1, μ_2 are measures on $\mathcal{B}([0, 1))$ satisfying

(i) T(μ_i) = μ_i, i = 1, 2,
(ii) λ = αμ₁ + (1 − α)μ₂ for an appropriate 0 < α < 1.
(1 pt.)

Solution(a): To show T is $\mathcal{B}([0,1))/\mathcal{B}([0,1))$ measurable, it is enough to consider inverse images of intervals of the form $[a,b] \subset [0,1)$. Now,

$$T^{-1}([a,b)) = [\frac{a}{3}, \frac{b}{3}) \cup [\frac{2a+1}{3}, \frac{2b+1}{3}) \in \mathcal{B}([0,1)).$$

Thus, T is measurable.

We claim that $T(\lambda) = \lambda$. To prove this, we use Theorem 5.7. Notice that $\mathcal{B}([0,1))$ is generated by the collection $\mathcal{G} = \{[a,b) : 0 \leq a \leq b < 1\}$ which is closed under finite intersections. Now,

$$T(\lambda)([a,b)) = \lambda(T^{-1}([a,b))) = \lambda([\frac{a}{3}, \frac{b}{3})) + \lambda([\frac{2a+1}{3}, \frac{2b+1}{3})) = b - a = \lambda([a,b)).$$

Since the constant sequence ([0,1)) is exhausting, belongs to \mathcal{G} and $\lambda([0,1)) = T(\lambda([0,1)) = 1 < \infty$, we have by Theorem 5.7 that $T(\lambda) = \lambda$.

Solution(b): We check the three conditions for a collection of sets to be a σ -algebra. Firstly, the empty set $\emptyset \in \mathcal{B}([0,1))$ and $T^{-1}(\emptyset) = \emptyset$, hence $\lambda(T^{-1}\emptyset\Delta\emptyset) = \lambda(\emptyset) = 0$, so $\emptyset \in \mathcal{C}$. Secondly, Let $A \in \mathcal{C}$, then $\lambda(T^{-1}A\Delta A) = 0$. Since

$$\lambda(T^{-1}A^c\Delta A^c) = \lambda(T^{-1}A\Delta A) = 0,$$

and $A^c \in \mathcal{B}([0,1))$, we have $A^c \in \mathcal{C}$. Thirdly, let (A_n) be a sequence in \mathcal{C} , then $A_n \in \mathcal{B}([0,1))$ and $\lambda(T^{-1}A_n\Delta A_n) = 0$ for each n. Since $\mathcal{B}([0,1))$ is a σ -algebra, we have $\bigcup_n A_n \in \mathcal{B}([0,1))$, and

$$T^{-1}(\bigcup_{n} A_{n}) = \bigcup_{n} T^{-1}A_{n} = \bigcup_{n} A_{n}.$$

An easy calculation shows that

$$T^{-1}(\bigcup_{n} A_{n})\Delta \bigcup_{m} A_{m} \subseteq \bigcup_{n} (T^{-1}A_{n}\Delta A_{n}).$$

By σ -subadditivity of λ , we have

$$\lambda \Big(T^{-1}(\bigcup_{m} A_{m}) \Delta \bigcup_{n} A_{n} \Big) \leq \sum_{n} \lambda \Big(T^{-1}A_{n} \Delta A_{n} \Big) = 0.$$

Thus, $\bigcup_n A_n \in \mathcal{C}$. This shows that \mathcal{C} is a σ -algebra.

Solution (c): First note that $0 < \lambda(A^c) < 1$ and $T^{-1}(A^c) = A^c$. The proofs that μ_1 and μ_2 are measures are similar, so we only prove that μ_1 is a measure. First note that

$$\mu_1(\emptyset) = \frac{\lambda(A \cap \emptyset)}{\lambda(A)} = \frac{\lambda(\emptyset)}{\lambda(A)} = 0$$

Suppose (A_i) is a pairwise disjoint sequence in $\mathcal{B}([0,1))$. Then

$$\mu_1(\bigcup_i A_i) = \frac{\lambda(A \cap \bigcup_i A_i)}{\lambda(A)} = \sum_i \frac{\lambda(A \cap A_i)}{\lambda(A)} = \sum_i \mu_1(A_i).$$

Hence, μ_1 is a measure. A similar proof shows that μ_2 is a measure. We now show (i). Firstly, since $T^{-1}(A) = A$ and $T^{-1}(A^c) = A^c$ we have by (a),

$$\lambda(A \cap T^{-1}(B)) = \lambda(T^{-1}(A) \cap T^{-1}(B)) = \lambda(T^{-1}(A \cap B) = \lambda(A \cap B),$$

and

$$\lambda(A^{c} \cap T^{-1}(B)) = \lambda(T^{-1}(A^{c}) \cap T^{-1}(B)) = \lambda(T^{-1}(A^{c} \cap B) = \lambda(A^{c} \cap B),$$

for any $B \in \mathcal{B}([0, 1))$. Thus,

$$T(\mu_1)(B) = \mu_1(T^{-1}(B)) = \frac{\lambda(A \cap T^{-1}(B))}{\lambda(A)} = \frac{\lambda(A \cap B)}{\lambda(A)} = \mu_1(B),$$

and

$$T(\mu_2)(B) = \mu_2(T^{-1}(B)) = \frac{\lambda(A^c \cap T^{-1}(B))}{\lambda(A^c)} = \frac{\lambda(A^c \cap B)}{\lambda(A^c)} = \mu_2(B).$$

To prove (ii), we notice that for any $B \in \mathcal{B}([0, 1))$,

$$\lambda(B) = \lambda(A \cap B) + \lambda(A^c \cap B) = \lambda(A)\mu_1(B) + \lambda(A^c)\mu_2(B).$$

Since $\lambda(A^c) = 1 - \lambda(A)$, the result follows with $\alpha = \lambda(A)$.

- 2. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra over \mathbb{R} , and λ is Lebesgue measure. Define f on \mathbb{R} by $f(x) = 2x\mathbf{1}_{[0,1)}(x)$.
 - (a) Show that f is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. (1 pt.)
 - (b) Find a sequence (f_n) in \mathcal{E}^+ such that $f_n \nearrow f$. (1 pt.)
 - (c) Determine the value of $\int f d\mu$ using only the material of Chapter 9. (1 pt.)
 - (d) Let $C = \sigma(\{\{x\} : x \in [0, 1)\})$ and $\mathcal{A} = \{A \subseteq [0, 2) : A \text{ is countable or } A^c \text{ is countable}\}.$ Show that f is C/\mathcal{A} measurable and $C = \mathcal{A} \cap [0, 1)$. (Here we are seeing f as a function defined on [0, 1)) (1 pt.)

Solution(a): Note that the function g(x) = 2x is continuous and hence $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. Also $[0,1) \in \mathcal{B}(\mathbb{R})$, hence $\mathbf{1}_{[0,1)}$ is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. Finally f is the product of two measurable functions, and therefore f is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable.

Solution(b): Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \sum_{k=0}^{2^n-1} \frac{2k}{2^n} \cdot \mathbf{1}_{[k/2^n, (k+1)/2^n)}, \ n \ge 1.$$

Since $[k/2^n, (k+1)/2^n) \in \mathcal{B}(\mathbb{R})$, then $f_n \in \mathcal{E}^+$. We now show that f_n increases to f. For $x \notin [0,1)$, i.e have $f_n(x) = f_{n+1}(x) = 0$. Suppose $x \in [0,1)$, then there exists a $0 \le k \le 2^n - 1$ such that $x \in [k/2^n, (k+1)/2^n)$. Since

$$[k/2^{n}, (k+1)/2^{n}) = [2k/2^{n+1}, (2k+1)/2^{n+1}) \cup [(2k+1)/2^{n+1}, (2k+2)/2^{n+1}),$$

we see that $f_n(x) = \frac{2k}{2^n}$ while $f_{n+1}(x) \in \{\frac{4k}{2^{n+1}}, \frac{2(2k+1)}{2^{n+1}}\}$ so that $f_n(x) \leq f_{n+1}(x)$. For $x \notin [0,1)$, we have $f(x) = f_n(x) = 0$ for all n. For $x \in [0,1)$, there exists for each n, an integer $k_n \in \{0, 1, \dots, 2^n - 1\}$ such that $x \in [k_n/2^n, (k_n + 1)/2^n)$. Thus,

$$|f(x) - f_n(x)| = |2x - \frac{2k_n}{2^n}| = 2|x - \frac{k_n}{2^n}| < \frac{1}{2^{n-1}}$$

Since f_n is an increasing sequence, we have

$$f(x) = \lim_{n \to \infty} f_n(x) = \sup_n f_n(x)$$

Solution(c): Since f is the supremum of measurable functions, by Corollary 8.9 f is measurable. To calculate the integral we apply Beppo-Levi,

$$\int f \, d\lambda = \lim_{n \to \infty} \int f_n \, d\lambda$$

=
$$\lim_{n \to \infty} \sum_{k=0}^{2^n - 1} \frac{2k}{2^n} \lambda([k/2^n, (k+1)/2^n))$$

=
$$\lim_{n \to \infty} \sum_{k=0}^{2^n - 1} \frac{2k}{2^n} \frac{1}{2^n}$$

=
$$\lim_{n \to \infty} \frac{2}{4^n} \sum_{k=0}^{2^n - 1} k$$

=
$$\lim_{n \to \infty} \frac{2}{2} \frac{(2^n - 1)2^n}{4^n} = 1.$$

Solution(d): First note that \mathcal{A} is a σ -algebra. Let $A \in \mathcal{A}$, and set $B = \{a/2 : a \in A\}$. Then $f^{-1}(A) = B$. If A is countable, then B is countable and can be written as a countable union of the form $B = \bigcup_{x \in B} \{x\}$. Since \mathcal{C} is a σ -algebra and $\{x\} \in \mathcal{C}$ we have $A \in \mathcal{C}$, and $f^{-1}(A) = B \in \mathcal{C}$. Similarly if A^c is countable, then $B^c = \{a/2 : a \in A^c\}$ is countable and can be written as a countable union of the form $B^c = \bigcup_{x \in B^c} \{x\}$, hence $A^c \in \mathcal{C}$, and $B^c \in \mathcal{C}$. Since $B^c = f^{-1}(A^c) = (f^{-1}(A))^c$, we see that $B = f^{-1}(A) \in \mathcal{C}$. Thus, f is \mathcal{C}/\mathcal{A} measurable. Now a similar argument as above shows that if $A \in \mathcal{A} \cap [0, 1)$ is countable then $A \in \mathcal{C}$, and if A^c is countable then $A^c \in \mathcal{C}$. Thus $\mathcal{A} \cap [0, 1) \subseteq \mathcal{C}$. Finally, notice that the generators of \mathcal{C} are elements of $\mathcal{A} \cap [0, 1)$, hence $\mathcal{C} \subseteq \mathcal{A} \cap [0, 1)$ implying equality.

- 3. Consider the measure space $([0, 1]\mathcal{B}([0, 1]), \lambda)$, where λ is the restriction of Lebesgue measure to [0, 1], and let $A \in \mathcal{B}([0, 1])$ be such that $\lambda(A) = 1/2$. Consider the real function f defined on [0, 1] by $f(x) = \lambda (A \cap [0, x])$.
 - (a) Show that for any $x, y \in [0, 1]$, we have

$$|f(x) - f(y)| \le |x - y|.$$

Conclude that f is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$ measurable. (1 pt.)

(b) Show that for any $\alpha \in (0, 1/2)$, there exists $A_{\alpha} \subset A$ with $A_{\alpha} \in \mathcal{B}([0, 1))$ and $\lambda(A_{\alpha}) = \alpha$. (1 pt.)

Solution(a): Let $x, y \in [0, 1]$ and assume with no loss of generality that y < x. Then

$$|f(x) - f(y)| = f(x) - f(y) = \lambda \Big(A \cap [y, x] \Big) \le \lambda([y, x]) = x - y = |x - y|.$$

The above shows that f is a continuous function on [0, 1], and hence Borel measurable.

Solution(b): Part (a) shows that f is a continuous function on [0, 1] with f(0) = 0, and $f(1) = \lambda(A) = 1/2$. Hence by the Intermediate Value Theorem, for any $\alpha \in (0, 1)$ there exists $x_0 \in (0, 1)$ such that $f(x_0) = \alpha$. Set $A_\alpha = A \cap [0, x_0]$, then $A_\alpha \subset A$ and $A_\alpha \in \mathcal{B}([0, 1] \text{ satisfies } \lambda(A_\alpha) = f(x_0) = \alpha$.