Measure and Integration: Quiz 2014-15

1. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra over \mathbb{R} , and λ is Lebesgue measure. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \sum_{k=0}^{2^n - 1} \frac{3k + 2^n}{2^n} \cdot \mathbf{1}_{[k/2^n, (k+1)/2^n)}(x), \ n \ge 1.$$

- (a) Show that f_n is measurable, and $f_n(x) \leq f_{n+1}(x)$ for all $x \in \mathbb{R}$. (1 pt)
- (b) Show that $\int \sup_{n \ge 1} f_n d\lambda = \frac{5}{2}$. (2 pts)
- 2. Let X be a set, and $\mathcal{C} \subseteq \mathcal{P}(X)$. Consider $\sigma(\mathcal{C})$, the smallest σ -algebra over X containing \mathcal{C} , and let \mathcal{D} be the collection of sets $A \in \sigma(\mathcal{C})$ with the property that there exists a countable collection $\mathcal{C}_0 \subseteq \mathcal{C}$ (depending on A) such that $A \in \sigma(\mathcal{C}_0)$.
 - (a) Show that \mathcal{D} is a σ -algebra over X. (2 pts)
 - (b) Show that $\mathcal{D} = \sigma(\mathcal{C})$. (1 pt)
- 3. Let (X, \mathcal{A}, μ) be a **finite** measure space (so $\mu(X) < \infty$), and $T: X \to X$ an \mathcal{A}/\mathcal{A} measurable function satisfying $\mu(A) = \mu(T^{-1}(A))$ for all $A \in \mathcal{A}$. For $n \ge 1$, denote
 by $T^n = T \circ T \circ \cdots \circ T$ the *n*-fold composition of *T* with itself.
 - (a) For $B \in \mathcal{A}$, let $D(B) = \{x \in B : T^n(x) \notin B \text{ for all } n \ge 1\}$. Show that $D(B) \in \mathcal{A}$. (1 pt)
 - (b) For $n \ge 1$, let $D(B)_n = T^{-n}(D(B))$. Show that $\mu(D(B)_n) = \mu(D(B))$, for $n \ge 1$, and that $D(B)_n \cap D(B)_m = \emptyset$ if $n \ne m$. (1 pt)
 - (c) Show that $\mu(D(B)) = 0$. (1 pt)
 - (d) Suppose $A \in \mathcal{A}$ satisfies the property that if $B \in \mathcal{A}$ with $\mu(B) > 0$, then there exists $n \ge 1$ such that $\mu(A \cap T^{-n}B) > 0$. Show that $\mu(A) > 0$, and if additionally $T^{-1}(A) = A$, then $\mu(A) = \mu(X)$. (1 pt)