Mathematisch Instituut

Boedapestlaan 6

3584 CD Utrecht

Measure and Integration: Extra Retake Final 2015-16

- (1) Consider the measure space $([0,1]\mathcal{B}([0,1]),\lambda)$, where $\mathcal{B}([0,1])$ is the restriction of the Borel σ algebra to [0,1], and λ is the restriction of Lebesgue measure to [0,1]. Let E_1, \dots, E_m be a collection of Borel measurable subsets of [0,1] such that every element $x \in [0,1]$ belongs to at least n sets in the collection $\{E_j\}_{j=1}^m$, where $n \leq m$. Show that there exists a $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \ge \frac{n}{m}$. (1 pt)
- (2) Let (X, \mathcal{F}, μ) be a measure space, and $1 < p, q < \infty$ conjugate numbers, i.e. 1/p + 1/q = 1. Show that if $f \in \mathcal{L}^p(\mu)$, then there exists $g \in \mathcal{L}^q(\mu)$ such that $||g||_q = 1$ and $\int fg \, d\mu = ||f||_p$. (1 pt)
- (3) Let (X, \mathcal{A}) be a measurable space and μ, ν are finite measure on \mathcal{A} . Show that there exists a function $f \in \mathcal{L}^1_+(\mu) \cap \mathcal{L}^1_+(\nu)$ such that for every $A \in \mathcal{A}$, we have

$$\int_{A} (1-f) \, d\mu = \int_{A} f \, d\nu.$$

(2 pts)

(4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ Lebesgue measure. Determine the value of

$$\lim_{n \to \infty} \int_{(0,n)} (1 + \frac{x}{n})^{-n} (1 - \sin \frac{x}{n}) \, d\lambda(x).$$

(2 pts)

- (5) Let $E_1 = E_2 = \mathbb{N} = \{1, 2, 3, \dots\}$. Let \mathcal{B} be the collection of all subsets of \mathbb{N} . and $\mu_1 = \mu_2$ be counting measure on \mathbb{N} . Let $f: E_1 \times E_2 \to \mathbb{R}$ by f(n,n) = n, f(n,n+1) = -n and f(n,m) = 0for $m \neq n, n+1$.

 - (a) Prove that $\int_{E_1} \int_{E_2} f(n,m) d\mu_2(m) d\mu_1(n) = 0.$ (0.75 pt) (b) Prove that $\int_{E_2} \int_{E_1} f(n,m) d\mu_1(n) d\mu_2(m) = \infty$. (0.75 pt)
 - (c) Explain why parts (a) and (b) do not contradict Fubini's Theorem. (0.5)
- (6) Let (X, \mathcal{A}, μ) be a σ -finite measure space, and (f_i) a uniformly integrable sequence of measurable functions. Define $F_k = \sup_{1 \le j \le k} |f_j|$ for $k \ge 1$.
 - (a) Show that for any $w \in \overline{\mathcal{M}^+}(\mathcal{A})$,

$$\int_{\{F_k > w\}} F_k \, d\mu \le \sum_{j=1}^k \int_{\{|f_j| > w\}} |f_j| \, d\mu.$$

(0.5)

(b) Show that for every $\epsilon > 0$, there exists a $w_{\epsilon} \in \mathcal{L}^{1}_{+}(\mu)$ such that for all $k \geq 1$

$$\int_X F_k \, d\mu \le \int_X w_\epsilon \, d\mu + k\epsilon.$$

(1 pt)

(c) Show that

$$\lim_{k \to \infty} \frac{1}{k} \int_X F_k \, d\mu = 0.$$

(0.5 pt)