Measure and Integration: Retake Final 2016-17

(1) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra and λ is Lebesgue measure. Let $B \in \mathcal{B}(\mathbb{R})$ be such that $0<\lambda(B)<\infty$, and define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x)=\lambda(B \cap(-\infty, x])
$$

(a) Prove that g is a uniformly continuous function. (1 pt)
(b) Show that for any $\alpha \in(0, \lambda(B))$ there exists a Borel measurable subset C_{α} of B such that $\lambda\left(C_{\alpha}\right)=\alpha$. (1 pt)
(2) Let (X, \mathcal{A}, μ) be a finite measure space, and $f \in \mathcal{M}(\mathcal{A})$ such that $f>0 \mu$ a.e. Define

$$
D=\{x \in X: f(x)>0\} \text { and } D_{n}=\{x \in D: f(x) \geq 1 / n\}, n \geq 1
$$

(a) Show that for every $\epsilon>0$ there exists $n_{0} \geq 1$ such that $\mu\left(D \backslash D_{n_{0}}\right)<\epsilon$. (1 pt)
(b) Show that for every $\epsilon>0$ there exists a $\delta>0$ such that if $E \in \mathcal{A}$ with $\mu(E) \geq \epsilon$, one has $\int_{E} f d \mu \geq \delta .(1 \mathrm{pt})$
(3) Let (X, \mathcal{A}, μ) be a measure space, and $p \in[1, \infty)$.
(a) Let $f, f_{n} \in \mathcal{L}^{p}(\mu)$ satisfy $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$, and $g, g_{n} \in \mathcal{M}(\mathcal{A})$ satisfy $\lim _{n \rightarrow \infty} g_{n}=g \mu$ a.e. Assume that $\left|g_{n}\right| \leq M$, where $M>0$ is a real number. Show that $\lim _{n \rightarrow \infty}\left\|f_{n} g_{n}-f g\right\|_{p}=0$. (1 pt)
(b) Assume that $\mu(X)<\infty$, and $u_{n}, u, w_{n}, w \in \mathcal{M}(\mathcal{A})$ such that $u_{n} \xrightarrow{\mu} u$, and $w_{n} \xrightarrow{\mu} w$ (i.e. convergence is in measure). Assume further that $|w| \leq M$ and $\left|u_{n}\right| \leq M$ for all n, where M is some positive real number. Show that $u_{n} w_{n} \xrightarrow{\mu} u w$. (1 pt)
(4) Consider the function $u:(1,2) \times \mathbb{R} \rightarrow \mathbb{R}$ given by $u(t, x)=e^{-t x^{2}} \cos x$. Let λ denotes Lebesgue measure on \mathbb{R}, show that the function $F:(1,2) \rightarrow \mathbb{R}$ given by $F(t)=\int_{\mathbb{R}} e^{-t x^{2}} \cos x d \lambda(x)$ is differentiable. (1 pt)
(5) Let $\left(X, \mathcal{A}, \mu_{1}\right)$ and $\left(Y, \mathcal{B}, \nu_{1}\right)$ be σ-finite measure spaces. Suppose $f \in \mathcal{L}^{1}\left(\mu_{1}\right)$ and $g \in \mathcal{L}^{1}\left(\nu_{1}\right)$ are non-negative. Define measures μ_{2} on \mathcal{A} and ν_{2} on \mathcal{B} by

$$
\mu_{2}(A)=\int_{A} f d \mu_{1} \text { and } \nu_{2}(B)=\int_{B} g d \nu_{1}
$$

for $A \in \mathcal{A}$ and $B \in \mathcal{B}$.
(a) For $D \in \mathcal{A} \otimes \mathcal{B}$ and $y \in Y$, let $D_{y}=\{x \in X:(x, y) \in D\}$. Show that if $\mu_{1}\left(D_{y}\right)=0 \nu_{1}$ a.e., then $\mu_{2}\left(D_{y}\right)=0 \nu_{2}$ a.e. (1 pt)
(b) Show that if $D \in \mathcal{A} \otimes \mathcal{B}$ is such that $\left(\mu_{1} \times \nu_{1}\right)(D)=0$ then $\left(\mu_{2} \times \nu_{2}\right)(D)=0$. (1 pt)
(c) Show that for every $D \in \mathcal{A} \otimes \mathcal{B}$ one has

$$
\left(\mu_{2} \times \nu_{2}\right)(D)=\int_{D} f(x) g(y) d\left(\mu_{1} \times \nu_{1}\right)(x, y)
$$

(1 pt)

