Institute of Mathematics, Faculty of Mathematics and Computer Science, UU. Made available in electronic form by the  $\mathcal{BC}$  of A–Eskwadraat In 2006/2007, the course WISB-312 was given by K. Dajani.

# Measure and Integration (WISB-312) 3rd of July 2007

#### Question 1

Consider the measure space  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ , where  $\mathcal{B}(\mathbb{R})$  is the Borel  $\sigma$ -algebra, and  $\lambda$  the Lebesgue measure.

a) Let  $f \in \mathcal{L}^1(\lambda)$ . Show that for all  $a \in \mathbb{R}$ , one has

$$\int_{\mathbb{R}} f(x-a) d\lambda(x) = \int_{\mathbb{R}} f(x) d\lambda(x)$$

b) Let  $k, g \in \mathcal{L}^1(\lambda)$ . Define  $F : \mathbb{R}^2 \to \overline{\mathbb{R}}$  by

$$F(x,y) = k(x-y)g(y)$$
 and  $h(x) = \int_{\mathbb{R}} F(x,y)d\lambda(y)$ 

- Show that F is measurable.
- Show that

$$\int_{\mathbb{R}} |h(x)| d\lambda(x) \leq \left( \int_{\mathbb{R}} |k(x)| d\lambda(x) \right) \left( \int_{\mathbb{R}} |g(y)| d\lambda(y) \right)$$

and  $\lambda(|h| = \infty) = 0$ .

#### Question 2

Consider the measure space  $((0, \infty), \mathcal{B}((0, \infty)), \lambda)$ , where  $\mathcal{B}((0, \infty))$  and  $\lambda$  are the restrictions of the Borel  $\sigma$ -algebra and the Lebesgue measure to the interval  $(0, \infty)$ . Show that

$$\lim_{n \to \infty} \int_{(0,n)} \left( 1 + \frac{x}{n} \right)^n e^{-2x} d\lambda(x) = 1.$$

### Question 3

Let  $(X, \mathcal{A}, \mu)$  be a probability space (i.e.  $\mu(X) = 1$ ).

a) Suppose  $1 \le p < r$ , and  $f_n, f \in \mathcal{L}^r(\mu)$  satisfy  $\lim_{n \to \infty} ||f_n - f||_r = 0$ . Show that

$$\lim_{n \to \infty} \|f_n - f\|_p = 0$$

b) Assume p, q > 1 satisfy  $\frac{1}{p} + \frac{1}{q} = 1$ . Suppose  $f_n, f \in \mathcal{L}^p(\mu)$ , and  $g_n, g \in \mathcal{L}^q(\mu)$  satisfy

$$\lim_{n \to \infty} \|f_n - f\|_p = \lim_{n \to \infty} \|g_n - g\|_q = 0$$

Show that  $\lim_{n \to \infty} ||f_n g_n - fg||_1 = 0.$ 

## Question 4

Let 0 < a < b. Prove with the help of Tonelli's theorem (applied to the function  $f(x,t) = e^{-xt}$  that  $\int_{[0,\infty)} (e^{-at} - e^{-bt}) \frac{1}{t} d\lambda(t) = \log(b/a)$ , where  $\lambda$  denotes the Lebesgue measure.

# Question 5

Let  $(X, \mathcal{A}, \mu_1)$  and  $(Y, \mathcal{B}, \nu_1)$  be measure spaces. Suppose  $f \in \mathcal{L}^1(\mu_1)$  and  $g \in \mathcal{L}^1(\nu_1)$  are non-negative. Define measures  $\mu_2$  on  $\mathcal{A}$  and  $\nu_2$  on  $\mathcal{B}$  by

$$\mu_2(A) = \int_A f \, d\mu_1$$
 and  $\nu_2(B) = \int_B g \, d\nu_1$ ,

for  $A \in \mathcal{A}$  and  $B \in \mathcal{B}$ .

- a) For  $D \in \mathcal{A} \otimes \mathcal{B}$  and  $y \in Y$ , let  $D_y = \{x \in X : (x, y) \in D\}$ . Show that if  $\mu_1(D_y) = 0$   $\nu_1$ -a.e., then  $\mu_2(D_y) = 0$   $\nu_2$ -a.e.
- b) Show that if  $D \in \mathcal{A} \otimes \mathcal{B}$  is such that  $(\mu_1 \times \nu_1)(D) = 0$  then  $(\mu_2 \times \nu_2)(D) = 0$ .
- c) Show that for every  $D \in \mathcal{A} \otimes \mathcal{B}$  one has

$$(\mu_2 \times \nu_2)(D) = \int_D f(x)g(y) d(\mu_1 \times \nu_1)(x,y).$$