Department of Mathematics, Faculty of Science, UU.
Made available in electronic form by the $\mathcal{T}_{\mathcal{B}} \mathcal{C}$ of A-Eskwadraat
In 2005/2006, the course WISB315 was given by Richard D. Gill.

Introduction to Functional Analysis (WISB315) February 2006

Give the reasoning behind your answers and derivations; you can refer to standard results in Saxe's book.

Question 1

Is it true or not true that:
a) $L_{2}(0,1)$ is a linear subspace of $L_{1}(0,1)$?
b) $L_{2}(0,1)$ is a closed linear subspace of $L_{1}(0,1)$ (with respect to $\left.\|\cdot\|_{1}\right)$?
c) Giving $B=C[0,1]$ the L_{2} norm, the mapping $T: B \rightarrow \mathbb{C}$ defined by $T f=f\left(\frac{1}{2}\right)$ is bounded?
d) Giving $B=C[0,1]$ the L_{2} norm, the mapping $T: B \rightarrow \mathbb{C}$ defined by $T f=\int_{0}^{1} f(x) \mathrm{d} x$ is bounded?

Question 2

Suppose that $u^{(n)}, n=1,2, \ldots$ is a countably infinite orthonormal sequence in a Hilbert space \mathcal{H}. Define \mathcal{U} to be the closed linear span of the $u^{(n)}$, i.e., the closure of the set of linear combinations of finitely many $u^{(n)}$.
a) Explain why $\mathcal{U}=\left\{\sum_{n} \alpha_{n} u^{(n)}: \sum_{n}\left|\alpha_{n}\right|^{2}<\infty\right\}$.
b) For an arbitrary element $v \in \mathcal{H}$ define $A(v)=\sum_{n}\left\langle v, u^{(n)}\right\rangle u^{(n)}$. Explain why $A(v)$ is well defined and is an element of \mathcal{U}.
c) We can write $v=z+w$ where $z \in \mathcal{U}, w \in \mathcal{U}^{\perp}, z$ and w are unique. We call z the orthogonal projection of v onto \mathcal{U}. Show that $z=A(v)$ and that A is a bounded linear operator from \mathcal{H} to \mathcal{H}. Show that A is Hermitian. Compute its norm and its spectrum. Show that A is not compact.
d) Suppose now that $\mathcal{H}=L_{2}(-\pi, \pi)$ and take the $u^{(n)}$ to be the sequence of cosine functions, including the constant function, taken from the usual trigonometric basis of \mathcal{H} (i.e., we omit the sines). Define $B: \mathcal{H} \rightarrow \mathcal{H}$ by $(B(v))(x)=\frac{1}{2}(v(x)+v(-x))$. Show that $B=A$. Hint: note that any element of $L_{2}(-\pi, \pi)$ can be written uniquely as a sum of an even and an uneven function: $v(x)=\frac{1}{2}(v(x)+v(-x))+\frac{1}{2}(v(x)-v(-x))$.

Question 3

Suppose that $f_{i}, g_{i}, i=1, \ldots, n$ are elements of $C[0,1]$ and define $K(x, y)=\sum f_{i}(x) g_{i}(y)$. Suppose the f_{i} 's are linearly independent of one another, and the g_{j} 's are linearly independent of one another. Define $A f$ by $(A f)(x)=\int_{0}^{1} K(x, y) f(y) \mathrm{d} y$.
a) Show that A is a bounded linear operator from $L_{2}(0,1)$ to $L_{2}(0,1)$.
b) Describe how you could compute the eigenvalues and eigenvectors of A, and show that its spectrum consists only of eigenvalues. Hint: it may be useful to introduce an orthonormal basis of the linear span of the g_{j} 's and f_{i} 's together. You may express your conclusions in terms of eigenvalues and eigenvectors of a finite dimensional matrix.

Question 4

This exercise concerns the characterization of compact subsets of ℓ_{1}. (An element u of ℓ_{1} is an infinite sequence of numbers u_{i} such that $\left.\|u\|_{1}=\sum_{i}\left|u_{i}\right|<\infty\right)$.

Show that a subset A of ℓ_{1} is compact if and only if it is (i) closed, (ii) bounded, and (iii) uniformly summable: for any given $\epsilon>0$ there exists an i_{0} such that for all $u \in A, \sum_{i \geq i_{0}}\left|u_{i}\right| \leq \epsilon$.

You may build up your proof with the following ingredients:
a) Show that a sequence $u^{(n)}, n=1,2 \ldots$ of elements of a set A having properties (i)-(iii), has a convergent subsequence (i.e., a subsequence which converges in $\|\cdot\|_{1}$).
b) Suppose A is closed and bounded but does not satisfy property (iii). That is: there exists an $\epsilon>0$ such that for each i_{0} there exists $u \in A$ with $\sum_{i>i_{0}}\left|u_{i}\right|>\epsilon$. Show there is a sequence $u^{(n)}, n=1,2, \ldots$ of elements of A without a convergent subsequence.
c) Use the result (a) to show that (i)-(iii) implies A is compact; use result (b) to show that if A does not satisfy (i)-(iii) then it is not compact.

