Exam: Representations of finite groups (WISB324)

Wednesday June 29, 9.00-12.00 h.

- You are allowed to bring one piece of A4-paper, wich may contain formulas, theorems or whatever you want (written/printed on both sides of the paper).
- All exercise parts having a number (·) are worth 1 point, except for 1(f), 1(h), 2(e), 3(b) and 3(f) which are worth 2 points. Exercise 1(i) is a bonus exercise, which is worth 2 points.
- Do not only give answers, but also prove statements, for instance by referring to a theorem in the book.

Good luck.

- 1. Let G be a non-commutative group of order 8.
 - (a) Show that there is no element of order 8.
 - (b) Show that there are elements of G that have order 4.

(c) Show that G has exactly 5 conjugacy classes and determine the degrees of the irreducible representations of G.

Now let $G = Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the Quaternion group, satisfying the relations

$$i^{2} = j^{2} = k^{2} = -1, \quad ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j$$

- (d) Determine all conjugacy classes of Q.
- (e) Show that $\langle i \rangle$ (the group generated by i) is a normal subgroup of Q.
- (f) Calculate the character table of Q.
- (g) Determine the character of the regular representation of Q.
- (h) Determine all normal subgroups of Q.

(i) (Bonus exercise) Find explicitly the matrices in $GL(n, \mathbb{C})$ for all elements of the irreducible representation of Q for which n is maximal.

Answers:

(a) If G has an element of order 8, then $G = C_8$, the cyclic group of order 8, wich is abelian. Contradiction.

(b) If G also has no element of order 4, then G has elements of order 1, the unit 1, and all other elements have order 2. Now let x and y be elements of order 2, then $x^{-1} = x$ and $y^{-1} = y$, thus $1 = (xy)^2 = xyxy$ and yx = yxxyxy = yyxy = xy. But in that case all elements commute and G is abelian. Contradiction.

(c) Use the fact that the number of conjagucy classes is equal to the number of irreducible characters. Then using the following formula for the degrees of he characters:

$$\sum_{i=1}^n d_j^2 = |G|,$$

and the fact that one of the modules is the trivial module of degree d = 1. Now not all degrees can be 1, since then the group would be abelian. Thus, the only possibilities for the degrees is 1, 1, 1, 1 and 2, hence n = 5 and there are 5 conjugacy classes.

(d) $\{1\}, \{-1\}, \{\pm i\}, \{\pm j\}$ and $\{\pm k\}$.

(e) $\langle i \rangle = \{i, -1, -i, 1\}$ is isomorphic to C_4 . Clearly 1 and -1 commute with all elements. We only have to conjugate $\pm i$ with j and k.

$$ji(-j) = (-k)(-j) = -i, \quad ki(-k) = j(-k) = -i,$$

indeed $\langle i \rangle$ is normal.

N.B. $\langle j \rangle$ and $\langle k \rangle$ are also normal subgroups.

(f) If we take G/H for $H = \langle i \rangle$, $\langle j \rangle$ and $\langle k \rangle$ we obtain C_2 , which is abelian and which has 2 irreducible characters the trivial one and $\chi(1) = 1$, $\chi(a) = -1$ here is a the generator of C_2 . We can lift these characters to the group and thus get 4 of the 5 characters of G. The last one χ_5 we can then calculate using the orthogonality relations of the columns of the character table. We thus get:

	1	-1	i	j	k	
χ_1	1	1	1	1	1	
χ_2	1	1	1	-1	-1	lift of $\langle i \rangle$
						lift of $\langle j \rangle$
χ_4	1	1	-1	-1	1	lift of $\langle k \rangle$
χ_5	2	-2	0	0	0	

(g) $\chi_{regular} = \chi_1 + \chi_2 + \chi_3 + \chi_4 + 2\chi_5$ and $\chi_{regular}(1) = 8$ and $\chi_{regular}(g) = 0$ for $g \neq 1$.

(h) All normal subgroups, except {1} can be found as intersections of kernels of linear characters. All irreducible characters are linear, except χ_5 . Thus we obtain G (kernel of χ_1), $\langle i \rangle$ (kernel of χ_2), $\langle j \rangle = \{\pm 1, \pm j\}$ (kernel of χ_3), $\langle k \rangle = \{\pm 1, \pm k\}$ (kernel of χ_4). Now taking intersections we only obtain $\{\pm 1\}$.

(i) Note that we only have to define $\pm i$ and $\pm j$ because they generate the whole group. The standard one for a + bi + cj + dk for $a, b, c, d = 0, \pm 1$ is

$$\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}.$$

2. Let $\mathbb{F} = \mathbb{C}$ and let G be a group.

(a) Let $x \in G$, show that $C_x = \sum_{g \in x^G} g$ is in the center $Z(\mathbb{C}G)$ of the group algebra $\mathbb{C}G$.

(b) Show that $C_x = C_y$ if and only if $y \in x^G$.

(c) Let G have k conjugacy classes and let x_1, x_2, \ldots, x_k be representatives of these different conjugacy classes. Show that $C_{x_1}, C_{x_2}, \cdots, C_{x_k}$ are linearly independent.

(d) Let $\chi_1, \chi_2, \ldots, \chi_\ell$ be the collection of all irreducible characters of G, prove that $D_i = \sum_{g \in G} \chi_i(g^{-1})g$ is in $Z(\mathbb{C}G)$.

(e) Prove that

$$\operatorname{span}(C_{x_1}, C_{x_2}, \dots, C_{x_k}) = \operatorname{span}(D_1, D_2, \dots, D_\ell)$$

(f) Prove that the elements D_i are also linearly independent.

Answers:

(a) Since we sum over a conjugacy class and $hx^g h^{-1} = x^G$, we have

$$hC_x h^{-1} = \sum_{g \in x^G} hgh^{-1} = \sum_{h^{-1}gh \in x^G} g = \sum_{g \in x^G} g,$$

thus $hC_x = C_x h$ for $h \in G$. This is not enough we have to prove that C_x is in the center of the group algebra. So let $r = \sum_{h \in G} \lambda_h h$, then

$$rC_x = \sum_{h \in G} \lambda_h h C_x = \sum_{h \in G} \lambda_h C_x h = C_x \sum_{h \in G} \lambda_h h = C_x r$$

and $C_x \in Z(\mathbb{C}G)$.

(b) Note that the conjugacy classes form a partition of G. Now, if $y \in x^G$, then $x^G = y^G$ and $C_x = C_y$. If, however, $y \notin x^G$, then $x^G \cap y^G = \emptyset$, hence $C_x \neq \mathbb{C}_y$. (c) Since the conjugacy classes form a partition of G, we have

$$0 = \sum_{i=1}^{k} \lambda_k C_{x_k} = \sum_{i=1}^{k} \lambda_k \sum_{g \in \mathcal{G}_k} g = \sum_{g \in G} \lambda_g g,$$

where $\lambda_g = \lambda_i$ if $g \in x_i^G$. Since the elements g form a basis of $\mathbb{C}G$, we find that all $\lambda_g = 0$ and hence all $\lambda_i = 0$, which gives that the C_{x_i} are linearly independent. (d) Note that $k = \ell$ since the number of irreducible characters is equal to the number of conjugacy classes of G and that characters are constant on conjugacy classes, hence $D_i = \sum_{j=1}^k \chi(x_j^{-1})C_{x_j}$ is a linear ombination of the elements $C_{x_j} \in Z(\mathbb{C}G)$. Thus $D_i \in Z(\mathbb{C}G)$.

(e) Note that $D_i = \sum_{g \in G} \overline{\chi_i(g)}g$ and that

$$(D_1,\ldots,D_k)^T = \overline{\chi}(C_{x_1},\ldots,C_{x_k})^T,$$

where χ is the matrix of the character table. Since χ is invertible, so is $\overline{\chi}$. Thus

$$(C_{x_1},\ldots,C_{x_k})^T = \overline{\chi}^{-1}(D_1,\ldots,D_k)^T$$

Which proves (e) but also (f). (f) See (e).

3. Let $H \leq G$ and let χ be a character of H.

(a) Prove that $\chi \uparrow G(1) = [G:H]\chi(1)$.

(b) Which irreducible character of the Quaternion group Q of exercise 1 is induced by a character of one of its subgroups?

(c) Let H be in the center Z(G) of G, prove that

$$\chi \uparrow G(g) = \begin{cases} [G:H]\chi(g) & \text{if } g \in H, \\ 0 & \text{if } g \notin H. \end{cases}$$

From now on let $G = D_{4n} = \langle a, b | a^{2n} = b^2 = 1, ab = ba^{-1} \rangle$.

(d) Determine the center $Z(D_{4n})$ of D_{4n} .

(e) Let $n \geq 2$, $H = Z(D_{4n})$ and χ be the non-trivial irreducible character of H, determine the values of $\chi \uparrow G(g)$ for $g \in D_{4n}$.

(f) The irreducible characters of D_{4n} ($n \ge 2$) have the following values on 1 and a^n :

- $(\psi(1), \psi(a^n)) = (1, 1),$
- $(\psi(1), \psi(a^n)) = (1, -1),$
- $(\psi(1), \psi(a^n)) = (2, 2),$
- $(\psi(1), \psi(a^n)) = (2, -2).$

Determine in all 4 cases the multiplicity of ψ in $\chi \uparrow G$.

Answers:

(a) Use the answer of (c) or write $G = \bigcup_{1 \le i \le s} g_i H$ where this is a disjoint uniton, then s = [G:H]. Let V be the $\mathbb{C}H$ -module that corresponds to χ , then the induced $\mathbb{C}G$ -module is $\bigoplus_{i=1}^{s} g_i V$ hence its dimension is $s \dim(V) = [G:H] \dim(V) = \chi \uparrow G(1)$. (b) We do not consider the case G = H because that would not be induced from a proper subgroup. Using (a) the only possibility is the character that is not linear. Since $\chi_5(1) = 2$, H must be a subgroup of order 4, since [G:H] must be 2. Take $H = \langle i \rangle$, and the character $\psi(i^k) = i^k$ The only conjugacy classes of G that have non-empty intersection with H are $\{1\}, \{-1\}$ and $\{\pm i\}$ Thus $\psi \uparrow G(\pm k) = \psi \uparrow G(\pm j) = 0$ and

$$\psi \uparrow G(\pm i) = 4\left(\frac{\psi(i)}{4} + \frac{\psi(-i)}{4}\right) = 0, \qquad \psi \uparrow G(\pm 1) = 8\frac{\psi(\pm 1)}{4} = \pm 2.$$

Hence $\psi \uparrow G = \chi_5$.

(c) We use the same formula as we have used in (b). Since H is the center of G every conjugacy class of an element $h \in H$ consists of only the element h (this both in G and in H). Thus

$$\chi \uparrow G(h) = |C_G(h)| \frac{\chi(h)}{|C_H(h)|} = [G:H]\chi(h) \text{ if } h \in H \text{ and } = 0 \text{ otherwise.}$$

(d) This is $\{1, a^n\}$.

(e) Apply the formula of (c) this gives the desired result:

$$\chi \uparrow G(g) = 0$$
 for $g \neq 1, a$, $\chi \uparrow G(1) = 2n$, $\chi \uparrow G(a^n) = -2n$.

(f) The multiplicity of ψ in $\chi \uparrow G$ is equal to

$$\langle \chi \uparrow G, \psi \rangle_G = \frac{1}{|G|} \left(2n\psi(1) - 2n\psi(a^n) \right) = \frac{1}{2} (\psi(1) - \psi(a^n)),$$

which is 0, 1, 0, 2, respectively.