EXAM

 $(27^{\rm th}$ June 2018, 9:00 – 11:00)

- You are allowed to use one A4-sheet (recto-verso) of handwritten notes. By contrast, you are not allowed to use any book or electronic devices during the exam.
- Every question part is worth 1 point except where indicated otherwise. If you obtain 20 points, you are guaranteed a grade 10.
- There are two bonus questions at the end. You can use them to gain additional points but answering them is not necessary to obtain the maximum grade.
- Do not just give answers but prove your statements, e.g. by referring to a theorem in the course.

Question 1. The G be a finite group.

- (a) Give the definition of the centre Z(G) and prove that it cannot have prime index.
- (b) Prove that if X is a G-set and $x, y \in X$ two elements in the same orbit, then their stabilisers $G_x, G_y \leq G$ are conjugate.

Question 2. Let G be a group of order 15. Show that every irreducible character of G has dimension 1 and deduce that G is abelian.

Question 3. Let k be a finite field, $G := \operatorname{SL}_2(k)$ and $H \leq G$ the subgroup of those $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G$ with c = 0. Further, let $\varphi \colon k^{\times} \to \mathbb{C}^{\times}$ be a group homomorphism (where k^{\times} and \mathbb{C}^{\times} are groups under multiplication) and χ the linear character of H defined by

$$\chi \colon H \to \mathbb{C}^{\times}, \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mapsto \varphi(a).$$

- (a) (2 points) For $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G$, determine the groups $H_g := gHg^{-1} \cap H \leq H$. Hint: Distinguish the cases $g \in H$ and for $g \notin H$, the cases a = 0 and $a \neq 0$.
- (b) (2 points) Also determine the characters ${}^{g}\chi \colon H_{g} \to \mathbb{C}^{\times}, x \mapsto \chi(g^{-1}xg)$.
- (c) Show that $\langle \chi \downarrow_{H_g}, {}^g \chi \rangle_{H_g} = 0$ iff $\langle \varphi, \bar{\varphi} \rangle_{k^{\times}} = 0$.
- (d) Conclude that $\chi \uparrow^G$ is irreducible iff $\varphi^2 \colon x \mapsto \varphi(x)^2$ is not constantly 1.

Question 4. Let $\mathbb{F}_3 = \{0, \pm 1\}$ be the field with 3 elements, $G := \mathrm{SL}_2(\mathbb{F}_3)$ (which is a group under matrix multiplication) and write

$$A := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad B := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in G.$$

The conjugacy classes of G can be calculated by hand and we list them at the end of this question.

Date: 27th June, 2018

- (a) Without referring to the table below, show that |G| = 24.
- (b) Determine the centralisers of A and B.
- (c) Without referring to the table below, why are A, -A and B pairwise not conjugated?
- (d) Recall that $Q_8 = \langle i, j \mid i^4 = 1, i^2 = j^2, j^{-1}ij = i^{-1} \rangle = \{\pm 1, \pm i, \pm j, \pm k\}$. Show that

$$\varphi \colon Q_8 \to G, \ i \mapsto B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \ j \mapsto C \coloneqq \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

is a well-defined morphism of groups and calculate its image.

- (e) Conclude that $[G, G] = \text{Im}(\varphi)$ and that $G/[G, G] \cong C_3$.
- (f) Determine the degrees of the irreducible characters of G.
- (g) Calculate the linear characters of G.
- (h) (2 points) Consider the 1-dimensional projective space (with coefficients in \mathbb{F}_3)

$$X := P^1 \mathbb{F}_3 := (\mathbb{F}_3^2 \setminus \{0\}) / \{\pm 1\} = \{(1:0), (1:1), (1:-1), (0:1)\}$$

consisting of all non-zero vectors in \mathbb{F}_3^2 up to non-zero scalar multiple (so for example (1:-1) = (-1:1)). Show that G acts on X by matrix multiplication and determine the associated reduced permutation character $\chi_X - 1$. Is it irreducible?

- (i) (2 points) One can show that G has exactly three real irreducible characters. With this information, complete the character table of G.
- (j) (Bonus) Let $H \leq G$ be as in Question 3 (for the specific case $G = SL_2(\mathbb{F}_3)$ at hand). Show that H is cyclic of order 6.
- (k) (Bonus, 2 points) Picking an isomorphism $H \cong C_6 = \langle r \mid r^6 = e \rangle$ and letting ψ be the linear character of C_6 given by $\psi(r) := -1$, determine the induced character $\psi \uparrow^G$ and decompose it as a sum of irreducible ones.

Class	Size	Elements
E^G	1	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
$(-E)^G$	1	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
B^G	6	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} \end{vmatrix}$
A^G	4	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$
$(-A)^G$	4	$\begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$
$(A^2)^G$	4	$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$
$(-A^2)^G$	4	$\begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$