Exam

$$
\left(27^{\text {th }} \text { June } 2018,9: 00-11: 00\right)
$$

- You are allowed to use one A4-sheet (recto-verso) of handwritten notes. By contrast, you are not allowed to use any book or electronic devices during the exam.
- Every question part is worth 1 point except where indicated otherwise. If you obtain 20 points, you are guaranteed a grade 10.
- There are two bonus questions at the end. You can use them to gain additional points but answering them is not necessary to obtain the maximum grade.
- Do not just give answers but prove your statements, e.g. by referring to a theorem in the course.

Question 1. The G be a finite group.
(a) Give the definition of the centre $Z(G)$ and prove that it cannot have prime index.
(b) Prove that if X is a G-set and $x, y \in X$ two elements in the same orbit, then their stabilisers $G_{x}, G_{y} \leqslant G$ are conjugate.

Question 2. Let G be a group of order 15. Show that every irreducible character of G has dimension 1 and deduce that G is abelian.

Question 3. Let k be a finite field, $G:=\mathrm{SL}_{2}(k)$ and $H \leqslant G$ the subgroup of those $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G$ with $c=0$. Further, let $\varphi: k^{\times} \rightarrow \mathbb{C}^{\times}$be a group homomorphism (where k^{\times}and \mathbb{C}^{\times}are groups under multiplication) and χ the linear character of H defined by

$$
\chi: H \rightarrow \mathbb{C}^{\times},\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] \mapsto \varphi(a)
$$

(a) (2 points) For $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G$, determine the groups $H_{g}:=g H g^{-1} \cap H \leqslant H$.

Hint: Distinguish the cases $g \in H$ and for $g \notin H$, the cases $a=0$ and $a \neq 0$.
(b) (2 points) Also determine the characters ${ }^{g} \chi: H_{g} \rightarrow \mathbb{C}^{\times}, x \mapsto \chi\left(g^{-1} x g\right)$.
(c) Show that $\left\langle\chi \downarrow_{H_{g}},{ }^{g} \chi\right\rangle_{H_{g}}=0$ iff $\langle\varphi, \bar{\varphi}\rangle_{k^{\times}}=0$.
(d) Conclude that $\chi \uparrow^{G}$ is irreducible iff $\varphi^{2}: x \mapsto \varphi(x)^{2}$ is not constantly 1.

Question 4. Let $\mathbb{F}_{3}=\{0, \pm 1\}$ be the field with 3 elements, $G:=\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$ (which is a group under matrix multiplication) and write

$$
A:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B:=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \in G .
$$

The conjugacy classes of G can be calculated by hand and we list them at the end of this question.
(a) Without referring to the table below, show that $|G|=24$.
(b) Determine the centralisers of A and B.
(c) Without referring to the table below, why are $A,-A$ and B pairwise not conjugated?
(d) Recall that $Q_{8}=\left\langle i, j \mid i^{4}=1, i^{2}=j^{2}, j^{-1} i j=i^{-1}\right\rangle=\{ \pm 1, \pm i, \pm j, \pm k\}$. Show that

$$
\varphi: Q_{8} \rightarrow G, i \mapsto B=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], j \mapsto C:=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

is a well-defined morphism of groups and calculate its image.
(e) Conclude that $[G, G]=\operatorname{Im}(\varphi)$ and that $G /[G, G] \cong C_{3}$.
(f) Determine the degrees of the irreducible characters of G.
(g) Calculate the linear characters of G.
(h) (2 points) Consider the 1-dimensional projective space (with coefficients in \mathbb{F}_{3})

$$
X:=P^{1} \mathbb{F}_{3}:=\left(\mathbb{F}_{3}^{2} \backslash\{0\}\right) /\{ \pm 1\}=\{(1: 0),(1: 1),(1:-1),(0: 1)\}
$$

consisting of all non-zero vectors in $\mathbb{F}_{3}{ }^{2}$ up to non-zero scalar multiple (so for example $(1:-1)=(-1: 1))$. Show that G acts on X by matrix multiplication and determine the associated reduced permutation character $\chi_{X}-1$. Is it irreducible?
(i) (2 points) One can show that G has exactly three real irreducible characters. With this information, complete the character table of G.
(j) (Bonus) Let $H \leqslant G$ be as in Question 3 (for the specific case $G=\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$ at hand). Show that H is cyclic of order 6 .
(k) (Bonus, 2 points) Picking an isomorphism $H \cong C_{6}=\left\langle r \mid r^{6}=e\right\rangle$ and letting ψ be the linear character of C_{6} given by $\psi(r):=-1$, determine the induced character $\psi \uparrow^{G}$ and decompose it as a sum of irreducible ones.

Class	Size	Elements
E^{G}	1	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$(-E)^{G}$	1	$\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
B^{G}	6	
A^{G}	4	$\left[\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right],\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right]$
$(-A)^{G}$	4	$\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]$
$\left(A^{2}\right)^{G}$	4	$\left[\begin{array}{cc}-1 & -1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$
$\left(-A^{2}\right)^{G}$	4	$\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right]$
$\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ -1 & -1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right]$		

