Exam Representations of Finite Groups, WISB324 With Solutions
 June 25, 2019, 17:00-20:00

1. Let G be the finite group given by

$$
G=\left\langle a, b, c \mid a^{3}=b^{3}=c^{3}=e, a b=b a, a c=c a, c^{-1} b c=a b\right\rangle .
$$

It has 27 elements and 11 conjugation classes. In the following we compute the irreducible characters of G without computing the conjugation classes.
(a) $(1 / 2 \mathrm{pt})$ Determine the dimensions of the irreducible representations of G.
Solution Suppose there are A three-dimensional, B two-dimensional and C one-dimensional representations. Then, $9 A+4 B+C=27$, the order of G and $A+B+C=11$, the number of conjugation classes. Subtract the two to get $8 A+3 B=16$. So B is divisible by 8 which is only possible if $B=0$. Hence $A=2$ and $C=11-A-B=9$.
(b) (1 pt) Determine the one-dimensional representations of G.

Solution This can be done independently of (a). Suppose we have a one-dimensional reprentation ρ and put $\rho(a)=\alpha, \rho(b)=\beta, \rho(c)=\gamma$. From the defining relations of G it follows that $\alpha^{3}=\beta^{3}=\gamma^{3}=1$ and $\gamma^{-1} \beta \gamma=\alpha \beta$, hence $\alpha=1$. Let $\omega=e^{2 \pi i / 3}$, then we see that $\beta=\omega^{k}, \gamma=\omega^{l}$ for some $k, l=0,1,2$. These are nine possibilities, corresponding to $C=9$ we had in (a).
(c) $(1 / 2 \mathrm{pt})$ Show that $\{e\},\{a\},\left\{a^{2}\right\}$ are conjugation classes of G.

Solution From the defining relations it follows that a commutes both with b and c. Hence a is in the center of G and so $\left\{a^{k}\right\}$ is a conjugation class for $k=0,1,2$.
(d) $(1 / 2 \mathrm{pt})$ Show that $\chi(g)=0$ for every $g \notin\left\{e, a, a^{2}\right\}$ and every irreducible character χ with $\chi(e)>1$.
Solution Choose a one-dimensional character ρ such that $\rho(g)=\omega$. Then ρ times χ and ρ^{2} times χ are also irreducible characters. If $\chi(g) \neq 0$, the three characters $\chi, \chi \rho, \chi \rho^{2}$ would be inequivalent since their values at g would be distinct. This contradicts the fact that we have only two three-dimensional representations. Hence $\chi(g)=0$.
(e) $(1 / 2 \mathrm{pt})$ Show that $\chi\left(a^{2}\right)=\overline{\chi(a)}$ for every character χ.
$\underline{\text { Solution Notice that } a^{2}=a^{-1} \text {. From the theory we know that } \chi\left(a^{-1}\right)=}$ $\overline{\chi(a)}$.
(f) $(1 / 2 \mathrm{pt})$ Show that there is an irreducible character such that $\chi(a) \notin \mathbb{R}$. Define $\alpha=\chi(a)$ for this character.
Solution Suppose that $\chi(a) \in \mathbb{R}$ for all χ. Then $\chi\left(a^{2}\right)=\chi(a)$ for all χ. Since $\{a\},\left\{a^{2}\right\}$ are distinct conjugation classes we have the column orthogonality relation $0=\sum_{\chi} \chi(a) \chi\left(a^{2}\right)=\sum_{\chi} \chi(a)^{2}>0$, which is a contradiction.
(g) (1 pt) Determine the possible values of α.

Solution Choose the character χ from part (f). Then $\bar{\chi}$ given by $\bar{\chi}(g)=$ $\overline{\chi)(g)}$ is also character and necessarily the character of the second threedimensional representation. We have the absolute value of the column corresponding to $\{a\}: 27=9 \times 1^{2}+|\alpha|^{2}+|\bar{\alpha}|^{2}$, hence $18=2|\alpha|^{2}$. So $|\alpha|=3$. The inner product relation of the columns corresponding to $\{e\}$ and $\{a\}$ reads $0=9+3 \alpha+3 \bar{\alpha}$ Hence $\alpha+\bar{\alpha}=-3$. So real part of $\alpha=$ $-3 / 2$. Imaginary part is then $\sqrt{3^{2}-(-3 / 2)^{2}}=\sqrt{27 / 4}= \pm 3 \sqrt{3} / 2$.
2. Consider the vector space of bilinear polynomials in $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ given by

$$
V=\left\{\sum_{i, j=1}^{3} \lambda_{i j} x_{i} y_{j} \mid \lambda_{i j} \in \mathbb{C}\right\} .
$$

We give V a $\mathbb{C} S_{3}$-module structure by letting every $\sigma \in S_{3}$ action as σ : $x_{i} y_{j} \mapsto x_{\sigma(i)} y_{\sigma(j)}$.
(a) ($1 / 2 \mathrm{pt}$) Write down the character table of S_{3}. Briefly motivate your answer.
Solution

	(1)	(12)	(123)
$\chi_{\text {triv }}$	1	1	1
$\chi_{\text {sign }}$	1	-1	1
χ_{Δ}	2	0	-1

(b) (1 pt) Determine the character of the $\mathbb{C} S_{3}$-module V and write it as sum of irreducible characters of S_{3}.
Solution The group S_{3} permutes the nine products $x_{i} y_{j}$. The character value of $\sigma \in S_{3}$ is simply the number of monomials that are fixed under σ. Hence $\chi_{V}((1))=9, \chi_{V}((12))=1, \chi_{V}((123))=0$. By linear algebra it follows that $\chi_{V}=2 \chi_{\text {triv }}+\chi_{\text {sign }}+3 \chi_{\Delta}$.
(c) (1 pt) Write down generators of the subspaces of V that correspond to one-dimensional $\mathbb{C} S_{3}$ submodules of V.
Solution It is clear that the sum of all monomials $x_{i} y_{j}$ is fixed under every σ, as well as the sum $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$. This is a basis of the
space with trivial action. For $\chi_{\text {sign }}$ simply try $x_{1} y_{2}-x_{2} y_{1}$ and add its images under (123), (123) ${ }^{2}$. That is

$$
x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{3}-x_{3} y_{2}+x_{3} y_{1}-x_{1} y_{3} .
$$

This turns out to be an eigenvector with eigenvalue -1 for $\sigma=(12)$.
(d) $(1 / 2 \mathrm{pt})$ Show that the $\mathbb{C} S_{3}$-module V is isomorphic to $W \otimes W$, where W is the $\mathbb{C} S_{3}$-module given by the permutation representation $\sigma: \mathbf{e}_{i} \mapsto$ $\mathbf{e}_{\sigma(i)}$ for all $\sigma \in S_{3}$ and $i=1,2,3$.
Solution The trace values of the permutation representation are $\chi_{W}=$ $3, \chi_{W}((12))=1, \chi_{W}((123))=0$. Notice that $\chi_{V}(\sigma)=\chi_{W}(\sigma)^{2}$ for all σ. Hence V is isomorphic to $W \otimes W$.
3. Let χ be a character of a finite group G.
(a) (1 pt) Show that if $\chi(g)=0$ for all $g \neq e$, then χ is a multiple of χ_{reg}, the character of the regular $\mathbb{C} G$-module.
Solution We have $\chi_{\mathrm{reg}}(e)=|G|$ and $\chi_{\mathrm{reg}}(g)=0$ for all $g \neq e$. Hence $\chi=(\chi(e) /|G|) \chi_{\text {reg }}$. If $\chi(e) /|G|$ is an integer we are done since representations are uniquely determined by their characters and so our representation would be the sum of $\chi(e) /|G|$ copies of the regular represenation. Notice also that the (integer) number of trivial representations in χ is given by the inner product $\frac{1}{|G|} \sum_{g \in G} \chi(g)=\chi(e) /|G|$.
(b) (1 pt) Suppose that $\chi(g) \in \mathbb{R}_{\geq 0}$ for all $g \in G$. Show that χ is either the trivial character, or reducible.
Solution The number of copies of the trivial character in the decomposition of χ is equals to the inner product $\frac{1}{|G|} \sum_{g \in G} \chi(g)$, which is positive because $\chi(g) \geq 0$ and $\chi(e)>0$. Hence χ contains at least one copy of the trivial character. If $\chi(e)=1$ then it equals the trivial character, if $\chi(e)>1$ it is reducible because it contains a copy of the trivial character.
4. (1 bonus point) The regular representation of a finite group G consists of the vector space $\mathbb{C} G$ together with an action of G given by $\rho_{1}(g): r \mapsto g r$ for all $g \in G, r \in \mathbb{C} G$. Denote this $\mathbb{C} G$-module by V_{1}. We define a second action of G by $\rho_{2}(g): r \mapsto r g^{-1}$ for all $g \in G, r \in \mathbb{C} G$.
(a) $(1 / 2)$ Show that $\mathbb{C} G$ with the action ρ_{2} is a $\mathbb{C} G$-module. Denote it by V_{2}.
Solution It is clear that $\rho_{2}(g)$ is a linear map. It remains to show that $\rho_{2}(g h)=\rho_{2}(g) \rho_{2}(h)$. Notice that

$$
\rho_{2}(g)\left(\rho_{2}(h) r\right)=\rho_{2}(g)\left(r h^{-1}\right)=r h^{-1} g^{-1}=r(g h)^{-1}=\rho_{2}(g h)(r) .
$$

(b) $(1 / 2)$ Show that V_{1} and V_{2} are isomorphic $\mathbb{C} G$-modules by exhibiting a $\mathbb{C} G$-isomorphism between them.
Solution The isomorphism is given by $\phi: \sum_{g} \lambda_{g} g \mapsto \sum_{g \in G} \lambda_{g} g^{-1}$. Notice that for every $h \in G$,

$$
\begin{gathered}
\phi\left(\rho_{1}(h)\left(\sum_{g} \lambda_{g} g\right)\right)=\phi\left(\sum_{g} \lambda_{g} h g\right)=\sum_{g} \lambda_{g}(h g)^{-1} \\
=\left(\sum_{g} \lambda_{g} g^{-1}\right) h^{-1}=\rho_{2}(h)\left(\phi\left(\sum_{g} \lambda_{g} g\right)\right) .
\end{gathered}
$$

So $\phi \circ \rho_{1}(g)=\rho_{2}(g) \circ \phi$.

