Exam Representations of Finite Groups, WISB324 With Solutions June 25, 2019, 17:00-20:00

1. Let G be the finite group given by

$$G = \langle a, b, c | a^3 = b^3 = c^3 = e, ab = ba, ac = ca, c^{-1}bc = ab \rangle$$

It has 27 elements and 11 conjugation classes. In the following we compute the irreducible characters of G without computing the conjugation classes.

(a) (1/2 pt) Determine the dimensions of the irreducible representations of G.

Solution Suppose there are A three-dimensional, B two-dimensional and C one-dimensional representations. Then, 9A + 4B + C = 27, the order of G and A + B + C = 11, the number of conjugation classes. Subtract the two to get 8A + 3B = 16. So B is divisible by 8 which is only possible if B = 0. Hence A = 2 and C = 11 - A - B = 9.

- (b) (1 pt) Determine the one-dimensional representations of G.
 Solution This can be done independently of (a). Suppose we have a one-dimensional representation ρ and put ρ(a) = α, ρ(b) = β, ρ(c) = γ. From the defining relations of G it follows that α³ = β³ = γ³ = 1 and γ⁻¹βγ = αβ, hence α = 1. Let ω = e^{2πi/3}, then we see that β = ω^k, γ = ω^l for some k, l = 0, 1, 2. These are nine possibilities, corresponding to C = 9 we had in (a).
- (c) (1/2 pt) Show that $\{e\}, \{a\}, \{a^2\}$ are conjugation classes of G. Solution From the defining relations it follows that a commutes both with b and c. Hence a is in the center of G and so $\{a^k\}$ is a conjugation class for k = 0, 1, 2.
- (d) (1/2 pt) Show that $\chi(g) = 0$ for every $g \notin \{e, a, a^2\}$ and every irreducible character χ with $\chi(e) > 1$. Solution Choose a one-dimensional character ρ such that $\rho(g) = \omega$. Then ρ times χ and ρ^2 times χ are also irreducible characters. If $\chi(g) \neq 0$, the three characters $\chi, \chi\rho, \chi\rho^2$ would be inequivalent since their values at g would be distinct. This contradicts the fact that we have only two three-dimensional representations. Hence $\chi(g) = 0$.
- (e) (1/2 pt) Show that $\chi(a^2) = \overline{\chi(a)}$ for every character χ . <u>Solution</u> Notice that $a^2 = a^{-1}$. From the theory we know that $\chi(a^{-1}) = \overline{\chi(a)}$.

- (f) (1/2 pt) Show that there is an irreducible character such that $\chi(a) \notin \mathbb{R}$. Define $\alpha = \chi(a)$ for this character. Solution Suppose that $\chi(a) \in \mathbb{R}$ for all χ . Then $\chi(a^2) = \chi(a)$ for all χ . Since $\{a\}, \{a^2\}$ are distinct conjugation classes we have the column orthogonality relation $0 = \sum_{\chi} \chi(a)\chi(a^2) = \sum_{\chi} \chi(a)^2 > 0$, which is a contradiction.
- (g) (1 pt) Determine the possible values of α .

Solution Choose the character χ from part (f). Then $\overline{\chi}$ given by $\overline{\chi}(g) = \overline{\chi})(g)$ is also character and necessarily the character of the second threedimensional representation. We have the absolute value of the column corresponding to $\{a\}$: $27 = 9 \times 1^2 + |\alpha|^2 + |\overline{\alpha}|^2$, hence $18 = 2|\alpha|^2$. So $|\alpha| = 3$. The inner product relation of the columns corresponding to $\{e\}$ and $\{a\}$ reads $0 = 9 + 3\alpha + 3\overline{\alpha}$ Hence $\alpha + \overline{\alpha} = -3$. So real part of $\alpha = -3/2$. Imaginary part is then $\sqrt{3^2 - (-3/2)^2} = \sqrt{27/4} = \pm 3\sqrt{3}/2$.

2. Consider the vector space of bilinear polynomials in $x_1, x_2, x_3, y_1, y_2, y_3$ given by

$$V = \left\{ \sum_{i,j=1}^{3} \lambda_{ij} x_i y_j \middle| \lambda_{ij} \in \mathbb{C} \right\}.$$

We give V a $\mathbb{C}S_3$ -module structure by letting every $\sigma \in S_3$ action as σ : $x_i y_j \mapsto x_{\sigma(i)} y_{\sigma(j)}$.

(a) (1/2 pt) Write down the character table of S_3 . Briefly motivate your answer.

Solution

	(1)	(12)	(123)
$\chi_{ m triv}$	1	1	1
$\chi_{ m sign}$	1	-1	1
χ_{Δ}	2	0	-1

(b) (1 pt) Determine the character of the $\mathbb{C}S_3$ -module V and write it as sum of irreducible characters of S_3 .

Solution The group S_3 permutes the nine products $x_i y_j$. The character value of $\sigma \in S_3$ is simply the number of monomials that are fixed under σ . Hence $\chi_V((1)) = 9, \chi_V((12)) = 1, \chi_V((123)) = 0$. By linear algebra it follows that $\chi_V = 2\chi_{\text{triv}} + \chi_{\text{sign}} + 3\chi_{\Delta}$.

(c) (1 pt) Write down generators of the subspaces of V that correspond to one-dimensional $\mathbb{C}S_3$ submodules of V.

Solution It is clear that the sum of all monomials $x_i y_j$ is fixed under every σ , as well as the sum $x_1y_1 + x_2y_2 + x_3y_3$. This is a basis of the space with trivial action. For χ_{sign} simply try $x_1y_2 - x_2y_1$ and add its images under (123), (123)². That is

$$x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3.$$

This turns out to be an eigenvector with eigenvalue -1 for $\sigma = (12)$.

- (d) (1/2 pt) Show that the $\mathbb{C}S_3$ -module V is isomorphic to $W \otimes W$, where W is the $\mathbb{C}S_3$ -module given by the permutation representation $\sigma : \mathbf{e}_i \mapsto \mathbf{e}_{\sigma(i)}$ for all $\sigma \in S_3$ and i = 1, 2, 3. Solution The trace values of the permutation representation are $\chi_W = 3, \chi_W((12)) = 1, \chi_W((123)) = 0$. Notice that $\chi_V(\sigma) = \chi_W(\sigma)^2$ for all σ . Hence V is isomorphic to $W \otimes W$.
- 3. Let χ be a character of a finite group G.
 - (a) (1 pt) Show that if $\chi(g) = 0$ for all $g \neq e$, then χ is a multiple of χ_{reg} , the character of the regular $\mathbb{C}G$ -module.

Solution We have $\chi_{\text{reg}}(e) = |G|$ and $\chi_{\text{reg}}(g) = 0$ for all $g \neq e$. Hence $\chi = (\chi(e)/|G|)\chi_{\text{reg}}$. If $\chi(e)/|G|$ is an integer we are done since representations are uniquely determined by their characters and so our representation would be the sum of $\chi(e)/|G|$ copies of the regular representation. Notice also that the (integer) number of trivial representations in χ is given by the inner product $\frac{1}{|G|} \sum_{g \in G} \chi(g) = \chi(e)/|G|$.

- (b) (1 pt) Suppose that $\chi(g) \in \mathbb{R}_{\geq 0}$ for all $g \in G$. Show that χ is either the trivial character, or reducible. Solution The number of copies of the trivial character in the decomposition of χ is equals to the inner product $\frac{1}{|G|} \sum_{g \in G} \chi(g)$, which is positive because $\chi(g) \geq 0$ and $\chi(e) > 0$. Hence χ contains at least one copy of the trivial character. If $\chi(e) = 1$ then it equals the trivial character, if $\chi(e) > 1$ it is reducible because it contains a copy of the trivial character.
- 4. (1 bonus point) The regular representation of a finite group G consists of the vector space $\mathbb{C}G$ together with an action of G given by $\rho_1(g): r \mapsto gr$ for all $g \in G, r \in \mathbb{C}G$. Denote this $\mathbb{C}G$ -module by V_1 . We define a second action of G by $\rho_2(g): r \mapsto rg^{-1}$ for all $g \in G, r \in \mathbb{C}G$.
 - (a) (1/2) Show that $\mathbb{C}G$ with the action ρ_2 is a $\mathbb{C}G$ -module. Denote it by V_2 .

Solution It is clear that $\rho_2(g)$ is a linear map. It remains to show that $\rho_2(gh) = \rho_2(g)\rho_2(h)$. Notice that

$$\rho_2(g)(\rho_2(h)r) = \rho_2(g)(rh^{-1}) = rh^{-1}g^{-1} = r(gh)^{-1} = \rho_2(gh)(r).$$

(b) (1/2) Show that V_1 and V_2 are isomorphic $\mathbb{C}G$ -modules by exhibiting a $\mathbb{C}G$ -isomorphism between them.

Solution The isomorphism is given by $\phi : \sum_g \lambda_g g \mapsto \sum_{g \in G} \lambda_g g^{-1}$. Notice that for every $h \in G$,

$$\phi\left(\rho_1(h)\left(\sum_g \lambda_g g\right)\right) = \phi\left(\sum_g \lambda_g hg\right) = \sum_g \lambda_g(hg)^{-1}$$
$$= \left(\sum_g \lambda_g g^{-1}\right) h^{-1} = \rho_2(h)\left(\phi\left(\sum_g \lambda_g g\right)\right).$$

So $\phi \circ \rho_1(g) = \rho_2(g) \circ \phi$.