Differentiable manifolds – Exam 2

Notes:

- 1. Write your name and student number **clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult any text book and class notes but **not allowed** to consult colleagues, calculators, computers etc.
- 5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Some definitions you should know, but may have forgotten.

- An n dimensional complex manifold is a manifold whose charts take values in \mathbb{C}^n and for which the change of coordinates are holomorphic maps.
- A volume form on a manifold M^n is a nowhere vanishing n-form.

Questions

- 1) Show that \mathbb{CP}^n , the set of complex lines through the origin in \mathbb{C}^{n+1} , can be given the structure of a complex manifold.
- 2) Given a manifold M, the space of sections of the bundle $TM \oplus T^*M$ is endowed with the natural pairing

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\eta(X) + \xi(Y))$$

and a bracket (the Courant bracket):

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - i_Y d\xi, \qquad X, Y \in \Gamma(TM); \ \xi, \eta \in \Gamma(T^*M).$$

a) Given a 2-form $B \in \Omega^2(M)$, let L be the subbundle of $TM \oplus T^*M$ given by

$$L = \{X - i_X B : X \in TM\}.$$

Show that L is involutive with respect to the Courant bracket if and only if B is closed.

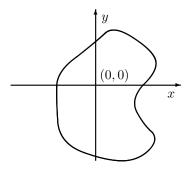
b) Show that for $X, Y, Z \in \Gamma(TM)$ and $\xi, \eta, \mu \in \Gamma(T^*M)$ we have

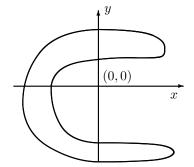
$$\mathcal{L}_X\langle Y+\eta,Z+\mu\rangle = \langle [\![X+\xi,Y+\eta]\!],Z+\mu\rangle + \langle Y+\eta,[\![X+\xi,Z+\mu]\!]\rangle.$$

3) Compute the integral of the 1-form

$$\theta = \frac{xdy - ydx}{x^2 + y^2}.$$

along the paths drawn below traced counterclockwise.





- 4) For $i \in \mathbb{N}$, let $p_i = (i,0) \in \mathbb{R}^2$. For $n \in \mathbb{N}$, compute the degree one de Rham cohomology of $\mathbb{R}^2 \setminus \{p_1, \dots, p_n\}$.
- 5) Show that every manifold admits a Riemannian metric.