Differentiable manifolds – Exam 3

Notes:

- 1. Write your name and student number ** clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult text books and class notes.
- 5. You are **not** allowed to consult colleagues, calculators, computers etc.
- 6. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Questions

Exercise 1 (2.0 pt). The complex projective *n*-space, denoted by $\mathbb{C}P^n$, is the set of all 1-dimensional complex linear subspaces of \mathbb{C}^{n+1} with the quotient topology inherited from the natural projections π : $\mathbb{C}^{n+1}\setminus\{0\}\longrightarrow\mathbb{C}P^n$. Show that $\mathbb{C}P^n$ is a compact 2*n*-dimensional topological manifold and show how to give it a smooth structure analogous to the one given in lectures to $\mathbb{R}P^n$.

Exercise 2 (2.0 pt). Let M be a manifold and $\varphi : S \longrightarrow M$ be an injective immersion (i.e., a submanifold). Show that φ is an embedding **if and only if** every smooth function $f : S \longrightarrow \mathbb{R}$ has an extension to a neighborhood U of $\varphi(S)$. That is, for every $f : S \longrightarrow \mathbb{R}$ smooth, there is an open $U \subset M$ with $\varphi(S) \subset U$ and a smooth map $g : U \longrightarrow \mathbb{R}$ such that the following diagram commutes

Exercise 3 (2.0 pt). Given a manifold M, the space of sections of the bundle $TM \oplus T^*M$ is endowed with the natural pairing

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\eta(X) + \xi(Y))$$

and a bracket (the *Courant bracket*):

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - i_Y d\xi, \qquad X, Y \in \Gamma(TM); \ \xi, \eta \in \Gamma(T^*M)$$

1. Given a 2-form $B \in \Omega^2(M)$, let L be the subbundle of $TM \oplus T^*M$ given by

$$L = \{X - i_X B : X \in TM\}$$

Letting $\Gamma(L)$ be the space of sections of L, show that

$$[\alpha, \beta] \subset \Gamma(L),$$
 for all $\alpha, \beta \in \Gamma(L)$

if and only if B is closed.

2. Show that for $X, Y, Z \in \Gamma(TM)$ and $\xi, \eta, \mu \in \Gamma(T^*M)$ we have

$$\mathcal{L}_X \langle Y + \eta, Z + \mu \rangle = \langle [X + \xi, Y + \eta], Z + \mu \rangle + \langle Y + \eta, [X + \xi, Z + \mu] \rangle.$$

Exercise 4 (2.0 pt). Let ρ be the following form defined on $\mathbb{R}^3 \setminus \{0\}$

$$\rho = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

- 1. Compute $d\rho$;
- 2. Compute the integral of ρ over the 2-sphere of radius 1 in \mathbb{R}^3 centered at the origin;
- 3. Compute the integral of ρ over the 2-torus in \mathbb{R}^3 parametrized by

$$S^1 \times S^1 \longrightarrow \mathbb{R}^3$$
 $(\theta, \varphi) \mapsto ((\cos \theta + 4) \cos \varphi, (\cos \theta + 4) \sin \varphi, \sin \theta)$

4. Is $H^2(\mathbb{R}^3 \setminus \{0\})$ trivial or not?

Exercise 5 (2.0 pt). Compute the degree one de Rham cohomology of

- 1. $\mathbb{R}^2 \setminus \{0\};$
- 2. $\mathbb{R}^n \setminus \{0\}$ for n > 2.