EXAM DIFFERENTIAL MANIFOLDS, JANUARY 29 2007, 9:00-12:00

READ THIS FIRST

- Put your name and student number on every sheet you hand in.
- You may do this exam either in English or in Dutch. Your grade will not only depend on the correctness of your answers, but also on your presentation; for this reason you are strongly advised to do the exam in your mother tongue if that possibility is open to you.
- Be clear and concise (and so avoid irrelevant discussions).
- Do not forget to turn this page: there are also problems on the other side.
- I will soon post a set of worked solutions (perhaps later today) on http://www.math.uu.nl/people/looijeng/smoothman06.html
- (1) Let $f: M \to N$ be a C^{∞} -map between manifolds. Prove that $F: M \to M \times N$, F(p) = (p, f(p)) is an embedding.
- (2) Let U ⊂ ℝ^m be open and let f : U → ℝ be a C[∞]-function with the property that df(p) ≠ 0 for every p ∈ U with f(p) = 0, so that (by the implicit function theorem) f⁻¹(0) is a submanifold.
 - (a) Prove that this submanifold is orientable.
 - (b) Give an example of a surface in \mathbb{R}^3 that is not orientable (and conclude that it cannot arise in the above manner).
- (3) Let f : N → M be a C[∞]-map between manifolds with N oriented compact and of dimension n and let α be an n-form on M. Prove that if H : ℝ × M → M is a flow, then ∫_N f^{*}H^{*}_tα is constant in t. (Hint for at least one way to do this: consider the pull-back of α under the map ℝ × N → M, (t, p) ↦ H_tf(p).)

- (4) Let $f: M \to N$ be a C^{∞} -map between manifolds and let V be a vector field on N. A *lift* of V over f is a vector field \tilde{V} on M with the property that $D_p f(\tilde{V}_p) = V_{f(p)}$ for all $p \in M$.
 - (a) Prove that f is a submersion at p, then there is an open neighborhood $U \ni p$ in M such that V has a lift over $f|_U : U \to N$.
 - (b) Prove that if U ⊂ M is open and V
 ₀,..., V
 _k are lifts of V over f|_U, then any convex linear combination of these is also one, that is, if φ₀,..., φ_k : U → ℝ are C[∞]-functions with Σ_i φ_i constant 1, then Σ_i φ_i V
 _i is also a lift of V.

In the remaining parts of this problem we assume that M and N are compact and that f is a submersion. Since N is compact, V generates a flow $H : \mathbb{R} \times N \to N$.

- (c) Prove that there exists a lift \tilde{V} of V over f.
- (d) Let $\tilde{H} : \mathbb{R} \times M \to M$ be the flow generated by this lift \tilde{V} . Prove that $f\tilde{H}_t = H_t f$.
- (5) Let *M* be a *m*-manifold and μ a nowhere zero *m*-form on *M*. Prove that *M* has an atlas such that every chart (U, κ) in that atlas has the property that $\mu|_U = \kappa^*(dx^1 \wedge \cdots \wedge dx^m)$. Prove that any coordinate change of this atlas (a diffeomorphism from an open subset of \mathbb{R}^m to another) has Jacobian a matrix of determinant constant 1.