Differentiable Manifolds (WISB342)
 1 February 2006

- For the full examination: Exercises 1, 2, 3, 4, 5.
- For the second part of the examination: Exercises 3, 4, 5, 6, 7.

Question 1

Recall that points on the real projective plane $\mathbb{R} P^{2}$ can be described by ratios $\left[\begin{array}{llll}X & : & Y & :\end{array}\right]$.

a) Show that f is well-defined and describe it in each of the three inhomogeneous coordinate charts ($[X: Y: Z] \rightarrow(Y / X, Z / X)$ for $X \neq 0$, and similarly for the other two).
b) Describe the subset of $\mathbb{R} P^{2}$ consisting of the critical points of f.

Question 2

Consider the following vector fields on \mathbb{R}^{2} :

$$
V_{1}=Y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y} ; \quad V_{2}=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z} ; \quad V_{3}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} .
$$

a) Work out the commutators $\left[V_{i}, V_{j}\right]$.
b) Describe the flow of each V_{i}.
c) Show that every sphere centered at the origin is left invariant by all three flows. Is there a smaller subset of such a sphere with this property?

Question 3

We consider the torus T^{2} embedded intro \mathbb{R}^{3} as follows:

$$
x=\left(2+\cos \theta^{1}\right) \cos \theta^{2} ; \quad y=\sin \theta^{1} ; \quad z=\left(2+\cos \theta^{1}\right) \sin \theta^{2}
$$

for $\theta^{1} \in[-\pi / 2,3 \pi / 2), \theta^{2} \in[-\pi, \pi)$. Consider the map $G: T^{2} \rightarrow S^{2}$ which assigns to every $p \in T^{2}$ the outward pointing normal vector at p.
a) Describe the set $G^{-1}(\vec{n})$, where $\vec{n}=(0,0,1)$ is the north pole, and show that \vec{n} is a regular value of G.
b) Compute the degree of G.

Question 4

The Künneth formula for the de Rham cohomology reads:

$$
H^{k}(M \times N)=\bigoplus_{i+j=k} H^{i}(M) \otimes H^{j}(N)
$$

a) Use the formula to compute the dimension of $H^{k}\left(T^{3}\right)$ for $k=0,1,2,3$, where $T^{3}=S^{1} \times S^{1} \times S^{1}$ is the 3 -torus.
b) Find explicit closed but not exact 1-forms ϕ_{i} corresponding to a basis of $H^{1}\left(T^{3}\right)$.
c) Find closed but not exact 2 -forms ψ^{j} such that $\int_{T^{3}} \phi_{i} \wedge \psi^{j}=\delta_{i}^{j}$, corresponding to the Poincaré dual basis for $H^{2}\left(T^{3}\right)$.

Question 5

Let $c:[0,1]^{2} \rightarrow \mathbb{R}^{3}-\{0\}$ be given by $c(s, t)=(\sin \pi t \cos 2 \pi s, \sin \pi t \sin 2 \pi s,-\cos \pi t)$, and let $\omega=$ $(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y) / r^{3}$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
a) Show that $\partial c=0$ and $d \omega=0$.
b) Compute $\int_{c} \omega$. Is ω exact? Is c a boundary? Justify your answers.
c) Why is $\int_{c} \omega=\int_{S^{2}} \iota^{*} \omega$, where ι is the inclusion of the unit sphere?

End of the full exam

Question 6

Let M be an n-dimensional manifold, X a vector field on M, ω a nowhere vanishing n-form.
a) Show there exists a smooth function $f_{X, \omega}$ such that $L_{X} \omega=f_{X, \omega} \omega$.
b) Suppose $f_{X, \omega}$ vanishes identically. What is the relation between ω and $\phi_{t}^{*} \omega$, where ϕ_{t} is the flow of X ? If $U \subset M$ is a compact n-dimensional manifold with boundary, what is the relation between $\int_{U} \omega$ and $\int_{\phi_{t}(U)} \omega$?
c) Let $M=\mathbb{R}^{3}, X=(A, B, C), \omega=d x \wedge d y \wedge d z$. Compute $f_{X, \omega}$ and relate it to a well-known quantity in vector calculus.

Question 7

What is the de Rham cohomology of the Möbius band? Justify your answer.

