
SOLUTIONS DIFFERENTIABLE MANIFOLDS EXAM, 2008 JANUARY 28 9:00–12:00

(1) Prove that an embedding of a manifoldM in a manifold N followed by an
embedding ofN in a third manifoldP is an embedding ofM in P .
A map f between differentiable manifolds is an embedding if and only if (i)f is an
immersion and (ii)f maps the domain manifold homeomorphically onto its image in the
target manifold. These two properties are preserved under composition. For instance, iff
mapsM homeorphically onto the subspacef(M) ⊂ N andg mapsN homemorphically
onto the subspaceg(N) ⊂ P , then gf mapsM homemorphically onto the subspace
gf(M) ⊂ P . This proves the asserted property.

(2) Letk andn be nonnegative integers and letNk,n be obtained from(Rk−{0})×Rn

by identifying(x, y) with (−x,−y).
(a) Prove thatNk,n is in a natural manner a manifold and that the projection(Rk−{0})×
Rn → (Rk − {0}) induces a differentiable mapπ : Nk,n → Nk,0.
(b) Prove thatNk,n has in fact the structure of a vector bundle overNk,0.
If Ũ ⊂ (Rk−{0})×Rn is such that̃U∩(−Ũ) = ∅, then the projection(Rk−{0})×Rn →
Nk,n mapsŨ homeomorphically onto an open subsetU of Nk,n. The inverse of that
homeomorphism is then a chart forNk,n. Two such charts with a common connected do-
main differ by a sign at most and so a coordinate change is differentiable. We further ob-
serve thatNk,n is Hausdorff: two distinct pointsp, q ∈ Nk,n have distinct representatives
p̃, q̃ ∈ (Rk − {0}) × Rn with q̃ 6= −p̃. If Ũp 3 p̃ andŨq 3 q̃ are disjoint neighborhoods
with Ũp ∩ (−Ũq) = ∅, then their images inNk,n, Up 3 p andUq 3 q are disjoint as well.

The projectioñπ : (Rk − {0})× Rn → (Rk − {0}) drops to a mapπ : Nk,n → Nk,0.
Let Ṽ ⊂ Rk −{0} be open and such that̃V ∩ (−Ṽ ) = ∅, so thatṼ defines an open subset
V of Nk,0. ThenṼ × Rn defines the open subsetπ−1V of Nk,n. If we regard these a
charts, then we see thatπ is differentiable.

The vector space structure onRn turnsπ into a vector bundle: for any two pairs of
charts as above, the transition function takes values in±1n ∈ GL(n, R).
(c) Prove thatNk,n is orientable ifk + n is even.
We show that there is a natural orientation for every tangent spaceTpNk,n. Given
p ∈ Nk,n, then let p̃,−p̃ ∈ (Rk − {0}) × Rn be its preimages. Then the obvious
isomorphismT−p̃Rn+k → TpNk,n is the composite of the derivative of minus the identity
in Rk+n and the obvious isomorphismT−p̃Rn+k → TpNk,n. Sincek + n is even,
−1k+n ∈ GL(R, k + n) is orientation preserving and so either isomorphism defines the
same orientation inTpNk,n

(3) LetM be a path-connected manifold and letα be a1-form onM with the property
that for every continuous, piecewise differentiable mapδ : S1 → M we have

∫
S1 δ∗α = 0.

(a) Prove that ifα closed, then it is in fact exact.
Sinceα is closed, the Poincaré lemma implies that we can coverM with open subsets
U ⊂ M such thatα|U = dfU for somefU : U → R. If U is path connected andp, q ∈ U ,
then for any pathγ : [a, b] → U from p to q we have

∫
γ

α =
∫ b

a

γ∗dfU =
∫ b

a

d(γ∗fU ) = fUγ(b)− fUγ(a) = fU (q)− fU (p).

This shows in particular thatfU is unique up to a constant.
1



Now fix po ∈ M . For everyp ∈ M we choose a differentiable pathγp from po to p
and putf(p) :=

∫
γp

α. We claim thatf(p) is independent of the choice ofγ. For if γ′p
is another path frompo to p, then traversing firstγp and thenγ′p in reverse order defines a
continuous, piecewise differentiable mapδ : S1 → M with

∫
S1 δ∗α =

∫
γ

α −
∫

γ′
α and

this is zero by assumption.
If U is a ball-like neighborhood ofp , then we can definef |U by means of paths that

begin withγp and then stay inU . The above argument shows thatf |U is up to an additive
constant equal to thefU we found there. Sof |U is differentiable anddf |U = α|U .
(b) Prove thatα is automatically closed.
In order to verifydα is zero inp ∈ M , choose a chart(U, κ) at p so thatκ(p) = 0 and
κ(U) contains the unit ball. Writeα =

∑
1≤i<j≤m κ∗(aijdxi∧dxj), wherem = dim M .

Now let for 1 ≤ i < j ≤ m andε < 1, Dij(ε) ⊂ Rm be the intersection of theε-ball in
Rm with the(xi, xj)-plane. Thenκ−1(∂Dij(ε)) is an oriented loop inM and so we have

0 =
∫

κ−1(∂Dij(ε))

α =
∫

κ−1(Dij(ε))

dα (by Stokes’ theorem)

=
∫

Dij(ε)

∑
k<l

akldxk ∧ dxl) =
∫

Dij(ε)

aijdxi ∧ dxj .

If we divide the latter expression byπε2, then it tends toaij(0) for ε → 0. It follows that
aij(0) = 0. Sodα(p) = 0.

(4) Let N be an oriented manifold of dimensionm + 1 ≥ 1 and f : N → R a
differentiable function whose differentialdf is nowhere zero.
(a) Prove that for everyt ∈ R, N≤t := f−1((−∞, t]) is a manifold with boundaryNt :=
f−1(t) and thatNt has a natural oriention.
Let p ∈ Nt. By the implicit function theorem there exists a chart(U, κ) at p such that
κ1 = f . It follows thatN≤t ∩ U is defined byκ1 ≤ 0. This shows thatN≤t is a manifold
with boundary. The orientation ofNt comes from the orientation ofN and its description
as a boundary: if we takeκ to be oriented, then(κ2, . . . , κm+1) is an oriented chart forNt

(b) LetX be a vector field onN with the property thatX(f) = 1. Prove that a local flow
H of X satisfiesf(H(t, p)) = f(p) + t.
It suffices to show that for a fixedp the derivative oft 7→ H(t, p) is constant equal to 1.
This is indeed the case:

d

dt
f(H(t, p)) = Df

( d

dt
H(t, p)

)
= Df(XH(t,p)) = X(f)(H(t, p)) = 1.

In the rest of this exercise we assume that for everys ≤ t, f−1([s, t]) is compact.
(c) Prove that for any closedm-formα onN ,

∫
Nt

α is independent oft.
Let s < t. Thenf−1([s, t]) is a manifold with boundary. The boundary decomposes into
Ns ∪Nt. The orientation it receives fromf−1([s, t]) is onNt the one we found under (a)
but onNs is it opposite. So by Stokes’ theorem∫

Nt

α−
∫

Ns

α =
∫

∂f−1([s,t])

α =
∫

f−1([s,t])

dα = 0.

(d) In the following problem you may assume thatX generates a flowH : R × N → N
(although this actually follows from our data). Letµ be a(m+1)-form onN with compact



support. Prove that the function

F (t) :=
∫

N≤t

µ

(whereNt is endowed with the orientation found in (a)) is differentiable and that its deriv-
ative int equals

∫
Nt

ιX(µ).
It follows from (b) thatHε mapsN≤t ontoN≤t+ε. So

F (t + ε) =
∫

Hε(N≤t)

µ =
∫

N≤t

H∗
ε µ

Differentiating this with respect toε atε = 0 yields

dF

dt
(t) =

∫
N≤t

d

dε

∣∣∣
ε=0

H∗
ε µ =

∫
N≤t

LXµ =
∫

N≤t

dιXµ =
∫

Nt

ιXµ,

where in the last equality we applied Stokes’ theorem.


