(1) Prove that an embedding of a manifold M in a manifold N followed by an embedding of N in a third manifold P is an embedding of M in P.

A map f between differentiable manifolds is an embedding if and only if (i) f is an immersion and (ii) f maps the domain manifold homeomorphically onto its image in the target manifold. These two properties are preserved under composition. For instance, if f maps M homeorphically onto the subspace $f(M) \subset N$ and g maps N homemorphically onto the subspace $g(N) \subset P$, then gf maps M homemorphically onto the subspace $g(M) \subset P$. This proves the asserted property.

(2) Let k and n be nonnegative integers and let $N_{k,n}$ be obtained from $(\mathbb{R}^k - \{0\}) \times \mathbb{R}^n$ by identifying (x, y) with (-x, -y).

(a) Prove that $N_{k,n}$ is in a natural manner a manifold and that the projection $(\mathbb{R}^k - \{0\}) \times \mathbb{R}^n \to (\mathbb{R}^k - \{0\})$ induces a differentiable map $\pi : N_{k,n} \to N_{k,0}$.

(b) Prove that $N_{k,n}$ has in fact the structure of a vector bundle over $N_{k,0}$.

If $\tilde{U} \subset (\mathbb{R}^k - \{0\}) \times \mathbb{R}^n$ is such that $\tilde{U} \cap (-\tilde{U}) = \emptyset$, then the projection $(\mathbb{R}^k - \{0\}) \times \mathbb{R}^n \to N_{k,n}$ maps \tilde{U} homeomorphically onto an open subset U of $N_{k,n}$. The inverse of that homeomorphism is then a chart for $N_{k,n}$. Two such charts with a common connected domain differ by a sign at most and so a coordinate change is differentiable. We further observe that $N_{k,n}$ is Hausdorff: two distinct points $p, q \in N_{k,n}$ have distinct representatives $\tilde{p}, \tilde{q} \in (\mathbb{R}^k - \{0\}) \times \mathbb{R}^n$ with $\tilde{q} \neq -\tilde{p}$. If $\tilde{U}_p \ni \tilde{p}$ and $\tilde{U}_q \ni \tilde{q}$ are disjoint neighborhoods with $\tilde{U}_p \cap (-\tilde{U}_q) = \emptyset$, then their images in $N_{k,n}, U_p \ni p$ and $U_q \ni q$ are disjoint as well.

The projection $\tilde{\pi} : (\mathbb{R}^k - \{0\}) \times \mathbb{R}^n \to (\mathbb{R}^k - \{0\})$ drops to a map $\pi : N_{k,n} \to N_{k,0}$. Let $\tilde{V} \subset \mathbb{R}^k - \{0\}$ be open and such that $\tilde{V} \cap (-\tilde{V}) = \emptyset$, so that \tilde{V} defines an open subset V of $N_{k,0}$. Then $\tilde{V} \times \mathbb{R}^n$ defines the open subset $\pi^{-1}V$ of $N_{k,n}$. If we regard these a charts, then we see that π is differentiable.

The vector space structure on \mathbb{R}^n turns π into a vector bundle: for any two pairs of charts as above, the transition function takes values in $\pm 1_n \in GL(n, \mathbb{R})$. (c) Prove that $N_{k,n}$ is orientable if k + n is even.

We show that there is a natural orientation for every tangent space $T_pN_{k,n}$. Given $p \in N_{k,n}$, then let $\tilde{p}, -\tilde{p} \in (\mathbb{R}^k - \{0\}) \times \mathbb{R}^n$ be its preimages. Then the obvious isomorphism $T_{-\tilde{p}}\mathbb{R}^{n+k} \to T_pN_{k,n}$ is the composite of the derivative of minus the identity in \mathbb{R}^{k+n} and the obvious isomorphism $T_{-\tilde{p}}\mathbb{R}^{n+k} \to T_pN_{k,n}$. Since k + n is even, $-1_{k+n} \in \operatorname{GL}(\mathbb{R}, k+n)$ is orientation preserving and so either isomorphism defines the same orientation in $T_pN_{k,n}$

(3) Let M be a path-connected manifold and let α be a 1-form on M with the property that for every continuous, piecewise differentiable map $\delta : S^1 \to M$ we have $\int_{S^1} \delta^* \alpha = 0$. (a) Prove that if α closed, then it is in fact exact.

Since α is closed, the Poincaré lemma implies that we can cover M with open subsets $U \subset M$ such that $\alpha | U = df_U$ for some $f_U : U \to \mathbb{R}$. If U is path connected and $p, q \in U$, then for any path $\gamma : [a, b] \to U$ from p to q we have

$$\int_{\gamma} \alpha = \int_a^b \gamma^* df_U = \int_a^b d(\gamma^* f_U) = f_U \gamma(b) - f_U \gamma(a) = f_U(q) - f_U(p).$$

This shows in particular that f_U is unique up to a constant.

Now fix $p_o \in M$. For every $p \in M$ we choose a differentiable path γ_p from p_o to p and put $f(p) := \int_{\gamma_p} \alpha$. We claim that f(p) is independent of the choice of γ . For if γ'_p is another path from p_o to p, then traversing first γ_p and then γ'_p in reverse order defines a continuous, piecewise differentiable map $\delta : S^1 \to M$ with $\int_{S^1} \delta^* \alpha = \int_{\gamma} \alpha - \int_{\gamma'} \alpha$ and this is zero by assumption.

If U is a ball-like neighborhood of p, then we can define f|U by means of paths that begin with γ_p and then stay in U. The above argument shows that f|U is up to an additive constant equal to the f_U we found there. So f|U is differentiable and $df|U = \alpha|U$. (b) Prove that α is automatically closed.

In order to verify $d\alpha$ is zero in $p \in M$, choose a chart (U, κ) at p so that $\kappa(p) = 0$ and $\kappa(U)$ contains the unit ball. Write $\alpha = \sum_{1 \leq i < j \leq m} \kappa^*(a_{ij}dx_i \wedge dx_j)$, where $m = \dim M$. Now let for $1 \leq i < j \leq m$ and $\varepsilon < 1$, $D_{ij}(\varepsilon) \subset \mathbb{R}^m$ be the intersection of the ε -ball in \mathbb{R}^m with the (x_i, x_j) -plane. Then $\kappa^{-1}(\partial D_{ij}(\varepsilon))$ is an oriented loop in M and so we have

$$0 = \int_{\kappa^{-1}(\partial D_{ij}(\varepsilon))} \alpha = \int_{\kappa^{-1}(D_{ij}(\varepsilon))} d\alpha \text{ (by Stokes' theorem)}$$
$$= \int_{D_{ij}(\varepsilon)} \sum_{k < l} a_{kl} dx_k \wedge dx_l = \int_{D_{ij}(\varepsilon)} a_{ij} dx_i \wedge dx_j.$$

If we divide the latter expression by $\pi \varepsilon^2$, then it tends to $a_{ij}(0)$ for $\varepsilon \to 0$. It follows that $a_{ij}(0) = 0$. So $d\alpha(p) = 0$.

(4) Let N be an oriented manifold of dimension $m + 1 \ge 1$ and $f : N \to \mathbb{R}$ a differentiable function whose differential df is nowhere zero.

(a) Prove that for every $t \in \mathbb{R}$, $N_{\leq t} := f^{-1}((-\infty, t])$ is a manifold with boundary $N_t := f^{-1}(t)$ and that N_t has a natural oriention.

Let $p \in N_t$. By the implicit function theorem there exists a chart (U, κ) at p such that $\kappa_1 = f$. It follows that $N_{\leq t} \cap U$ is defined by $\kappa_1 \leq 0$. This shows that $N_{\leq t}$ is a manifold with boundary. The orientation of N_t comes from the orientation of N and its description as a boundary: if we take κ to be oriented, then $(\kappa_2, \ldots, \kappa_{m+1})$ is an oriented chart for N_t (b) Let X be a vector field on N with the property that X(f) = 1. Prove that a local flow H of X satisfies f(H(t, p)) = f(p) + t.

It suffices to show that for a fixed p the derivative of $t \mapsto H(t, p)$ is constant equal to 1. This is indeed the case:

$$\frac{d}{dt}f(H(t,p)) = Df\left(\frac{d}{dt}H(t,p)\right) = Df(X_{H(t,p)}) = X(f)(H(t,p)) = 1.$$

In the rest of this exercise we assume that for every $s \le t$, $f^{-1}([s,t])$ is compact. (c) Prove that for any closed m-form α on N, $\int_{N_t} \alpha$ is independent of t.

Let s < t. Then $f^{-1}([s,t])$ is a manifold with boundary. The boundary decomposes into $N_s \cup N_t$. The orientation it receives from $f^{-1}([s,t])$ is on N_t the one we found under (a) but on N_s is it opposite. So by Stokes' theorem

$$\int_{N_t} \alpha - \int_{N_s} \alpha = \int_{\partial f^{-1}([s,t])} \alpha = \int_{f^{-1}([s,t])} d\alpha = 0.$$

(d) In the following problem you may assume that X generates a flow $H : \mathbb{R} \times N \to N$ (although this actually follows from our data). Let μ be a (m+1)-form on N with compact

support. Prove that the function

$$F(t):=\int_{N_{\leq t}}\mu$$

(where N_t is endowed with the orientation found in (a)) is differentiable and that its deriv-(where N_t is chaosed matrix $f_{N_t} \iota_X(\mu)$. ative in t equals $\int_{N_t} \iota_X(\mu)$. It follows from (b) that H_{ε} maps $N_{\leq t}$ onto $N_{\leq t+\varepsilon}$. So

$$F(t+\varepsilon) = \int_{H_{\varepsilon}(N_{\leq t})} \mu = \int_{N_{\leq t}} H_{\varepsilon}^* \mu$$

Differentiating this with respect to ε at $\varepsilon=0$ yields

$$\frac{dF}{dt}(t) = \int_{N_{\leq t}} \frac{d}{d\varepsilon} \Big|_{\varepsilon=0} H_{\varepsilon}^* \mu = \int_{N_{\leq t}} \mathcal{L}_X \mu = \int_{N_{\leq t}} d\iota_X \mu = \int_{N_t} \iota_X \mu,$$

where in the last equality we applied Stokes' theorem.