SOLUTIONS DIFFERENTIABLE MANIFOLDS EXAM, 2008 JANUARY 28 9:00-12:00
(1) Prove that an embedding of a manifold M in a manifold N followed by an embedding of N in a third manifold P is an embedding of M in P.
A map f between differentiable manifolds is an embedding if and only if (i) f is an immersion and (ii) f maps the domain manifold homeomorphically onto its image in the target manifold. These two properties are preserved under composition. For instance, if f maps M homeorphically onto the subspace $f(M) \subset N$ and g maps N homemorphically onto the subspace $g(N) \subset P$, then $g f$ maps M homemorphically onto the subspace $g f(M) \subset P$. This proves the asserted property.
(2) Let k and n be nonnegative integers and let $N_{k, n}$ be obtained from $\left(\mathbb{R}^{k}-\{0\}\right) \times \mathbb{R}^{n}$ by identifying (x, y) with $(-x,-y)$.
(a) Prove that $N_{k, n}$ is in a natural manner a manifold and that the projection $\left(\mathbb{R}^{k}-\{0\}\right) \times$ $\mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{k}-\{0\}\right)$ induces a differentiable map $\pi: N_{k, n} \rightarrow N_{k, 0}$.
(b) Prove that $N_{k, n}$ has in fact the structure of a vector bundle over $N_{k, 0}$.

If $\tilde{U} \subset\left(\mathbb{R}^{k}-\{0\}\right) \times \mathbb{R}^{n}$ is such that $\tilde{U} \cap(-\tilde{U})=\emptyset$, then the projection $\left(\mathbb{R}^{k}-\{0\}\right) \times \mathbb{R}^{n} \rightarrow$ $N_{k, n}$ maps \tilde{U} homeomorphically onto an open subset U of $N_{k, n}$. The inverse of that homeomorphism is then a chart for $N_{k, n}$. Two such charts with a common connected domain differ by a sign at most and so a coordinate change is differentiable. We further observe that $N_{k, n}$ is Hausdorff: two distinct points $p, q \in N_{k, n}$ have distinct representatives $\tilde{p}, \tilde{q} \in\left(\mathbb{R}^{k}-\{0\}\right) \times \mathbb{R}^{n}$ with $\tilde{q} \neq-\tilde{p}$. If $\tilde{U}_{p} \ni \tilde{p}$ and $\tilde{U}_{q} \ni \tilde{q}$ are disjoint neighborhoods with $\tilde{U}_{p} \cap\left(-\tilde{U}_{q}\right)=\emptyset$, then their images in $N_{k, n}, U_{p} \ni p$ and $U_{q} \ni q$ are disjoint as well.

The projection $\tilde{\pi}:\left(\mathbb{R}^{k}-\{0\}\right) \times \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{k}-\{0\}\right)$ drops to a map $\pi: N_{k, n} \rightarrow N_{k, 0}$. Let $\tilde{V} \subset \mathbb{R}^{k}-\{0\}$ be open and such that $\tilde{V} \cap(-\tilde{V})=\emptyset$, so that \tilde{V} defines an open subset V of $N_{k, 0}$. Then $\tilde{V} \times \mathbb{R}^{n}$ defines the open subset $\pi^{-1} V$ of $N_{k, n}$. If we regard these a charts, then we see that π is differentiable.

The vector space structure on \mathbb{R}^{n} turns π into a vector bundle: for any two pairs of charts as above, the transition function takes values in $\pm 1_{n} \in \mathrm{GL}(n, \mathbb{R})$.
(c) Prove that $N_{k, n}$ is orientable if $k+n$ is even.

We show that there is a natural orientation for every tangent space $T_{p} N_{k, n}$. Given $p \in N_{k, n}$, then let $\tilde{p},-\tilde{p} \in\left(\mathbb{R}^{k}-\{0\}\right) \times \mathbb{R}^{n}$ be its preimages. Then the obvious isomorphism $T_{-\tilde{p}} \mathbb{R}^{n+k} \rightarrow T_{p} N_{k, n}$ is the composite of the derivative of minus the identity in \mathbb{R}^{k+n} and the obvious isomorphism $T_{-\tilde{p}} \mathbb{R}^{n+k} \rightarrow T_{p} N_{k, n}$. Since $k+n$ is even, $-1_{k+n} \in \mathrm{GL}(\mathbb{R}, k+n)$ is orientation preserving and so either isomorphism defines the same orientation in $T_{p} N_{k, n}$
(3) Let M be a path-connected manifold and let α be a 1-form on M with the property that for every continuous, piecewise differentiable map $\delta: S^{1} \rightarrow M$ we have $\int_{S^{1}} \delta^{*} \alpha=0$. (a) Prove that if α closed, then it is infact exact.

Since α is closed, the Poincaré lemma implies that we can cover M with open subsets $U \subset M$ such that $\alpha \mid U=d f_{U}$ for some $f_{U}: U \rightarrow \mathbb{R}$. If U is path connected and $p, q \in U$, then for any path $\gamma:[a, b] \rightarrow U$ from p to q we have

$$
\int_{\gamma} \alpha=\int_{a}^{b} \gamma^{*} d f_{U}=\int_{a}^{b} d\left(\gamma^{*} f_{U}\right)=f_{U} \gamma(b)-f_{U} \gamma(a)=f_{U}(q)-f_{U}(p)
$$

This shows in particular that f_{U} is unique up to a constant.

Now fix $p_{o} \in M$. For every $p \in M$ we choose a differentiable path γ_{p} from p_{o} to p and put $f(p):=\int_{\gamma_{p}} \alpha$. We claim that $f(p)$ is independent of the choice of γ. For if γ_{p}^{\prime} is another path from p_{o} to p, then traversing first γ_{p} and then γ_{p}^{\prime} in reverse order defines a continuous, piecewise differentiable map $\delta: S^{1} \rightarrow M$ with $\int_{S^{1}} \delta^{*} \alpha=\int_{\gamma} \alpha-\int_{\gamma^{\prime}} \alpha$ and this is zero by assumption.

If U is a ball-like neighborhood of p, then we can define $f \mid U$ by means of paths that begin with γ_{p} and then stay in U. The above argument shows that $f \mid U$ is up to an additive constant equal to the f_{U} we found there. So $f \mid U$ is differentiable and $d f|U=\alpha| U$.
(b) Prove that α is automatically closed.

In order to verify $d \alpha$ is zero in $p \in M$, choose a chart (U, κ) at p so that $\kappa(p)=0$ and $\kappa(U)$ contains the unit ball. Write $\alpha=\sum_{1 \leq i<j \leq m} \kappa^{*}\left(a_{i j} d x_{i} \wedge d x_{j}\right)$, where $m=\operatorname{dim} M$. Now let for $1 \leq i<j \leq m$ and $\varepsilon<1, D_{i j}(\varepsilon) \subset \mathbb{R}^{m}$ be the intersection of the ε-ball in \mathbb{R}^{m} with the $\left(\overline{x_{i}}, x_{j}\right)$-plane. Then $\kappa^{-1}\left(\partial D_{i j}(\varepsilon)\right)$ is an oriented loop in M and so we have

$$
\begin{aligned}
& 0=\int_{\kappa^{-1}\left(\partial D_{i j}(\varepsilon)\right)} \alpha=\int_{\kappa^{-1}\left(D_{i j}(\varepsilon)\right)} d \alpha(\text { by Stokes' theorem) } \\
&\left.=\int_{D_{i j}(\varepsilon)} \sum_{k<l} a_{k l} d x_{k} \wedge d x_{l}\right)=\int_{D_{i j}(\varepsilon)} a_{i j} d x_{i} \wedge d x_{j} .
\end{aligned}
$$

If we divide the latter expression by $\pi \varepsilon^{2}$, then it tends to $a_{i j}(0)$ for $\varepsilon \rightarrow 0$. It follows that $a_{i j}(0)=0$. So $d \alpha(p)=0$.
(4) Let N be an oriented manifold of dimension $m+1 \geq 1$ and $f: N \rightarrow \mathbb{R} a$ differentiable function whose differential df is nowhere zero.
(a) Prove that for every $t \in \mathbb{R}, N_{\leq t}:=f^{-1}((-\infty, t])$ is a manifold with boundary $N_{t}:=$ $f^{-1}(t)$ and that N_{t} has a natural oriention.
Let $p \in N_{t}$. By the implicit function theorem there exists a chart (U, κ) at p such that $\kappa_{1}=f$. It follows that $N_{\leq t} \cap U$ is defined by $\kappa_{1} \leq 0$. This shows that $N_{\leq t}$ is a manifold with boundary. The orientation of N_{t} comes from the orientation of N and its description as a boundary: if we take κ to be oriented, then $\left(\kappa_{2}, \ldots, \kappa_{m+1}\right)$ is an oriented chart for N_{t}
(b) Let X be a vector field on N with the property that $X(f)=1$. Prove that a local flow H of X satisfies $f(H(t, p))=f(p)+t$.
It suffices to show that for a fixed p the derivative of $t \mapsto H(t, p)$ is constant equal to 1 . This is indeed the case:

$$
\frac{d}{d t} f(H(t, p))=D f\left(\frac{d}{d t} H(t, p)\right)=D f\left(X_{H(t, p)}\right)=X(f)(H(t, p))=1
$$

In the rest of this exercise we assume that for every $s \leq t, f^{-1}([s, t])$ is compact.
(c) Prove that for any closed m-form α on $N, \int_{N_{t}} \alpha$ is independent of t.

Let $s<t$. Then $f^{-1}([s, t])$ is a manifold with boundary. The boundary decomposes into $N_{s} \cup N_{t}$. The orientation it receives from $f^{-1}([s, t])$ is on N_{t} the one we found under (a) but on N_{s} is it opposite. So by Stokes' theorem

$$
\int_{N_{t}} \alpha-\int_{N_{s}} \alpha=\int_{\partial f^{-1}([s, t])} \alpha=\int_{f^{-1}([s, t])} d \alpha=0 .
$$

(d) In the following problem you may assume that X generates a flow $H: \mathbb{R} \times N \rightarrow N$ (although this actually follows from our data). Let μ be a $(m+1)$-form on N with compact
support. Prove that the function

$$
F(t):=\int_{N_{\leq t}} \mu
$$

(where N_{t} is endowed with the orientation found in (a)) is differentiable and that its derivative in t equals $\int_{N_{t}} \iota_{X}(\mu)$.
It follows from (b) that H_{ε} maps $N_{\leq t}$ onto $N_{\leq t+\varepsilon}$. So

$$
F(t+\varepsilon)=\int_{H_{\varepsilon}\left(N_{\leq t}\right)} \mu=\int_{N_{\leq t}} H_{\varepsilon}^{*} \mu
$$

Differentiating this with respect to ε at $\varepsilon=0$ yields

$$
\frac{d F}{d t}(t)=\left.\int_{N_{\leq t}} \frac{d}{d \varepsilon}\right|_{\varepsilon=0} H_{\varepsilon}^{*} \mu=\int_{N_{\leq t}} \mathcal{L}_{X} \mu=\int_{N_{\leq t}} d \iota_{X} \mu=\int_{N_{t}} \iota_{X} \mu,
$$

where in the last equality we applied Stokes' theorem.

