
Statistiek (WISB361)

II Midterm exam
June 28, 2013

Schrijf uw naam op elk in te leveren vel. Ook schrijf uw studentnummer op blad 1.

The maximum number of points is 100.
Points distribution: 20–25–25–30

1. Suppose we have a random sample Y := {Y1, . . . , Yn} of n i.i.d. random variables with density function

fY (y; θ) =

{
θ yθ−1, 0 < y < 1,
0 otherwise,

where θ > 0 is a unknown parameter. Consider the test:{
H0 : θ = 1,
H1 : θ 6= 1

(a) [10pt] Determine the generalized likelihood ratio for this testing problem, knowing that the maximum

likelihood estimator of θ is: θ̂MLE = −n∑n
i=1 log(Yi)

Solution:
The GLR test has rejection region {Λ < c}, where

Λ =
lik(θ0)

lik(θ̂MLE)
,

lik(θ) is the likelihood function:

lik(θ) = θn

(
n∏
i=1

yi

)θ−1
and, in this case, θ0 = 1. Hence, we have:

Λ =
1

θ̂nMLE (
∏n
i=1 yi)

θ̂MLE−1
=

(
∏n
i=1 yi)

1−θ̂MLE

θ̂nMLE

=

(∑
i log yi
−n

)n(∏
i

yi

)1+ n∑
i log yi

=

(∑
i log yi
−n

)n (
e
∑

i log yi
)1+ n∑

i log yi = n−n

(
−

n∑
i

log yi

)n
exp

(
n∑
i=1

log yi + n

)

(b) [10pt] Suppose that we observe a random sample of size n = 8. Moreover, from the data we have∑8
i=1 log yi = −4. Test H0 at the approximate significance level α = 0.10.

Solution:
We have:

−2 log Λ = −2

(
n log

(
−
∑
i log Yi
n

)
+
∑
i

log Yi + n

)
By asymptotic results −2 log Λ ≈ χ2(1− 0) = χ2(1). Thus, for the observed data we have:

− log Λ = −2(8 log(4/8)− 4 + 8) ≈ 3.09

and since χ2
1(0.10) = 2.71, we can reject H0 at 0.10 level of significance.



Table 1:
Battery Bnew Battery Bold

yi xi
n = 6 m = 7
0.80 7.26
1.71 2.04
4,10 0.94
6.10 1.76
7.89 11.08
24.10 0.60

9.04

2. A company has released a new battery Bnew which is supposed to replace the standard one Bold. In order
to compare the duration of the two type of batteries Bnew and Bold, the following two independent samples
Y = {Yi}6i=1 and X = {Xi}7i=1 were collected, and the life times of the batteries expressed in hours are
reported:

(a) [10pt] Test the hypothesis that there is no difference of duration between Bnew and Bold at α = 0.05
level of significance, without any further assumption on the statistical model generating the data.
Solution:
Since we do not have any information about the distribution of the data, we perform a non–parametric
two–sided Mann Whitney test. The sum of ranks are: Tx = 47, Ty = 44. In order to use Table 8 of the
textbook: we have n1 = 6, R = 44, R′ = 84−44 = 40, R? = min(40, 44) = 40. From Table 8, the critical
value for R∗ is 27. Since R? > 27 we do not reject the null hypothesis of no difference at 0.05 level of
significance.

(b) [15pt] Suppose we know now that the observations are i.i.d and normally distributed. According to
this additional knowledge, which statistical test would be more appropriate for testing H0 of point (a)?
Perform this test, trying to check, if possible, the assumptions of the statistical model behind.
(Useful relation for the F distribution: Fα(n1, n2) = 1/F1−α(n2, n1)).
Solution:

Since X and Y are two independent normal samples, we perform a F test at 0.05 level of significance for
testing the assumption of equal variance of the t test. Thus, we test:{

H0 : σ2
X = σ2

Y ,
H1 : σ2

X 6= σ2
Y

We have:
x̄ = 4.67, ȳ = 7.45

S2
X = 2.65.7− 7× 4.672/6 = 18.84, S2

Y = 700.65− 6× 7.452/5 = 73.53,

S2
X

S2
Y

= 0.256, F0.975(6, 5) = 6.98, , F0.025(6, 5) = 1/F0.975(5, 6) = 0.197

Since 0, 256 ∈ (0.167, 678) we do not reject H0 of equal variance. We can proceed now to perform a
two–sided t test for: {

H0 : µX = µY ,
H1 : µX 6= µY ,

We have:

2



s2p = 43.7,
x̄− ȳ

sp
√

1/7 + 1/6
= −0.756, df = 7 + 6− 2 = 11,

t0.0975(11) = 2.201

Since −0.756 ∈ (−2.201, 2.201) also in this case we do not reject H0 at 0.05 level of significance.

3. Consider the multivariate regression model Y = Xβ + e, with β> = (β0, β1, β2), Y> = (Y1, . . . , Yn), where
n = 63 is the sample size and e> = (ε1, . . . , εn) with εi i.i.d. N(0, σ2).

The least squares estimates β̂0, β̂1, β̂2 and the corresponding estimated covariance matrix are given by:

β̂
>

= (β̂0, β̂1, β̂2) = (2, 3,−1) and

Cov(β̂, β̂) =

 3 −2 1
−2 4 0
1 0 3


Test each of the following hypotheses at 0.05 level of significance and state the conclusion:

(a) [5pt] {
H0 : β1 = 0,
H1 : β1 6= 0

Solution:
In each case we use a two-sided t test with a 0.05 significance level. The critical values are given by
t0.025(63− 3) = t0.025(60) = −2.000 and t0.975(60) = 2.000. The rejection region is t < −2 or t > 2.

t =
β̂1
sβ̂1

=
3√
4

= 1.5

Since −2 < 1.5 < 2 , we fail to reject H0 and conclude that there is no sample evidence to suggest that
2 6= 0.

(b) [10pt] {
H0 : β0 + 2β1 = 5,
H1 : β0 + 2β1 6= 5,

Solution:
We use the statistic:

t =
β̂0 + 2β̂1 − 5

sβ̂0+2β̂1

=
3

sβ̂0+2β̂1

with

s2
β̂0+2β̂1

= Var(β̂0 + 2β̂1) = Var(β̂0) + 4Var(β̂1) + 4Cov(β̂0, β̂1) = 3 + 4× 4− 4× 2 = 11

Therefore,

t =
3

3.3166
= 0.9045

Since −2 < 0.9045 < 2 , we do not reject H0.
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(c) [10pt] {
H0 : β0 − β1 + β2 = 4,
H1 : β0 − β1 + β2 6= 4,

Solution:
We use the statistic:

t =
β̂0 − β̂1 + β̂2 − 4

sβ̂0−β̂1+β̂2

=
−6

sβ̂0−β̂1+β̂2

with

s2
β̂0−β̂1+β̂2

= Var(β̂0 − β̂1 + β̂2)

= Var(β̂0) + Var(β̂1) + Var(β̂2)− 2Cov(β̂0, β̂1) + 2Cov(β̂0, β̂2)− 2Cov(β̂1, β̂2) = 16

Thus,

t =
−6

4
= −1.5

Since −2 < −1.5 < 2 , we fail to reject H0.

4. Consider the multivariate regression model in matrix form Y = Xβ + e, with β> = (β0, β1. . . . , βp−1),

Y> = (Y1, . . . , Yn), and e> = (ε1, . . . , εn) with εi i.i.d. N(0, σ2).

(a) [10pt] Show that, for any fixed σ2, the maximum likelihood estimator β̂MLE is equal to the least squares

estimator β̂.
Solution:
Since the observations are independent, the likelihood is just the product of their density functions, so:

lik(β, σ) =

n∏
i=1

1√
2πσ2

exp

{
− 1

2σ2
(Yi − (Xβ)i)

2

}
Thus the log-likelihood is:

l(β, σ) = −n log
√

2π − n log σ − 1

2σ2

n∑
1=1

(Yi − (Xβ)i)
2 = −n log

√
2π − n log σ − 1

2σ2
S(β)

where
S(β) = e>e = (Y−Xβ)>(Y−Xβ)

is the sum of squares. Hence, for any fixed σ2, l(β, σ) is maximised when S(β) is minimised, so that

β̂ = β̂MLE .

(b) [8pt] Does the equality σ̂2
MLE = σ̂2 hold, where σ̂2 denotes the variance estimator based on the residual

sum of squares (RSS)?

(Recall that σ̂2 = 1/(n− p)‖Y−Xβ̂‖2 = 1/(n− p)(Y−Xβ̂)>(Y−Xβ̂)?
Solution:
Since we know that σ̂ is unbiased and that σ̂MLE is biased, we could have answered to this question.
However, Differentiating the log-likelihood with respect to σ, and setting to zero, we get:

−n
σ

+ S(β)/σ2 = 0

so we obtain σ̂2
MLE = S(β̂)/n.
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(c) [12pt] Consider now the case when the errors εi are not longer normally distributed but they are i.i.d.
with probability density:

f(ε) =
1

2σ
exp(−|ε|/σ), ε ∈ R

Under this assumption, is still the maximum likelihood estimator of β equal to the least squares estima-
tor?
Solution:
If we assume that the errors have density f , then a similar argument to the one of point a), shows that
MLE requires us to minimise

LD(Y;β) =

n∑
i=1

|Yi − (Xβ)i)|

in other words the `1 norm of the vector Y−Xβ that in general has different minimizers from the sum
of squares.
For instance, consider the simple linear regression with only the intercept β0. The model is Yi = β0 + εi.

Clearly, the least squares estimator is the mean β̂0 = Ȳ =
∑n

i=1 Yi

n , while the MLE estimator:

β̂0MLE = argminβ0∈RLD(Y;β0) = argminβ0

∑
i

|Yi − β0|

Let us consider the data y> = (1, 0, . . . , 0), with only the first component different fom 0. Hence,

β̂0 = 1/n and LD(y; 1/n) = 1− 1
n + (n− 1) 1

n = 2− 2
n > 1 when n > 2. However, for the choice β0 = 0:

LD(y; 0) = 1 + 0 = 1 < LD(y; 1/n) = LD(y; β̂0)
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