Statistiek (WISB263)

Final Exam

January 30, 2017
Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.
(The exam is an open-book exam: notes and book are allowed. The scientific calculator is allowed as well). The maximum number of points is 100 .
Points distribution: 25-20-30-25

1. Given two parameters $a>0$ and $k>0$, let $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample of n i.i.d. observations sampled from the random variable X with density function:

$$
f_{X}(x ; a, k):= \begin{cases}k e^{-k(x-a)} & x \geq a \\ 0 & x<a\end{cases}
$$

(a) (8 pt) Find sufficient statistics for a, k and for the couple (a, k).
(b) (5pt) Determine, in case it exists, the maximum likelihood estimator of a in case k is known.
(c) $(5 \mathrm{pt})$ Determine, in case it exists, the maximum likelihood estimator of k in case a is known.
(d) $(7 \mathrm{pt})$ Determine, in case it exists, the maximum likelihood estimator of the couple (a, k).
2. We consider the following three random samples of size 100:

$$
\mathbb{X}_{i}:=\left\{X_{i, 1}, X_{i, 2}, \ldots X_{i, 100}\right\}
$$

with $i \in\{1,2,3\}$. Each sample \mathbb{X}_{i} consists of i.i.d. normal random variables, such that $X_{i, j} \sim N\left(50, \sigma_{i}^{2}\right)$ for any $j \in\{1, \ldots, 100\}$. Moreover the samples are independent (i.e. $X_{i, j} \perp X_{\ell m}$, for any $i \neq \ell$). We want to test:

$$
\begin{cases}H_{0}: & \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2} \\ H_{1}: & \text { the variances are not equal. }\end{cases}
$$

(a) [10pt] Show that the Generalized Likelihood Ratio Test (GLRT) statistic Λ is such that:

$$
-2 \log \Lambda=300 \log \left(\frac{1}{3} \sum_{i=1}^{3} s_{i}^{2}\right)-100 \sum_{i=1}^{3} \log s_{i}^{2}
$$

where $s_{i}^{2}:=1 / 100 \sum_{j=1}^{100}\left(X_{i, j}-50\right)^{2}$, with $i \in\{1,2,3\}$.
(b) [10pt] If the collected data $\mathbf{x}_{i}=\left\{x_{i, 1}, \ldots, x_{i, 100}\right\}$, with $i \in\{1,2,3\}$, are such that:

$$
\begin{array}{lll}
\sum_{j=1}^{100} x_{1, j}=5040, & \sum_{j=1}^{100} x_{2, j}=4890, & \sum_{j=1}^{100} x_{3, j}=4920, \\
\sum_{j=1}^{100} x_{1, j}^{2}=264200, & \sum_{j=1}^{100} x_{2, j}^{2}=250000, & \sum_{j=1}^{100} x_{2, j}^{2}=251700
\end{array}
$$

perform a GLRT at $\alpha=0.05$ level of significance (you can consider the sample size $n=100$ large enough for applying large sample results).
3. The life times (in hours) of $n=30$ batteries have been measured from a company interested in the performances of a new product. In this way, a sample $\mathbb{X}=\left\{X_{1}, \ldots X_{30}\right\}$ of i.i.d. random variable X_{j}, representing the life time of the j-th battery, has been collected. In the following table the empirical cumulative distribution function $\hat{F}_{30}(x)$ (i.e. $\left.\hat{F}_{n}(x)=1 / n \sum_{j=1}^{n} \mathbf{1}\left(X_{j} \leq x\right)\right)$ is reported:

x (in hours)	1	2	4	6	8	11	13	27	29	42
$\hat{F}_{30}(x)$	$7 / 30$	$12 / 30$	$16 / 30$	$20 / 30$	$23 / 30$	$26 / 30$	$27 / 30$	$28 / 30$	$29 / 30$	1

(a) $[6 \mathrm{pt}]$ Determine an estimator of the probability that the battery produced lasts more than 9 hours (i.e. $\mathbb{P}(X>9))$.
(b) [8pt] Derive an approximated 95% confidence interval for the probability that the battery produced lasts more than 9 hours.

Due to previous statistical analyses performed on similar batteries, we can assume now that the sample is a collection of 30 i.i.d. exponential random variable with expected value θ (i.e. $X_{i} \sim \operatorname{Exp}(1 / \theta)$).
(c) [8pt] Under these parametric assumptions, calculate the maximum likelihood estimator of the probability that the battery produced lasts more than 9 hours.
(d) [8pt] If we denote with $p(\theta)$ the probability that the battery produced lasts more than 9 hours, propose a test for testing the hypotheses:

$$
\begin{cases}H_{0}: & p=0.32 \\ H_{1}: & p=0.16\end{cases}
$$

at the α level of significance.
4. Let the independent random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ be such that we have the following linear model:

$$
Y_{i}=\alpha+\beta x_{i}+\epsilon_{i}
$$

for $i=1, \ldots, n$, where ϵ_{i} are i.i.d. normal random variables such that $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$. Let $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ be the model in the matrix formalism. After we collected a sample of size $n=42$, we have that:

$$
\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=\left(\begin{array}{cc}
0.03 & -0.015 \\
-0.015 & 0.04
\end{array}\right)
$$

Furthermore, we know that the least squares estimate is $\hat{\boldsymbol{\beta}}^{\top}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=(1.90,0.65)$ and that the residual sum of squares $\|\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}=160$.
(a) $[8 \mathrm{pt}]$ Compute the 95% confidence intervals for β_{0} and β_{1}
(b) $[10 \mathrm{pt}]$ Consider the test:

$$
\begin{cases}H_{0}: & \beta_{0}=2, \\ H_{1}: & \beta_{0} \neq 2\end{cases}
$$

Will H_{0} be rejected at a significance level of 5% ? And at a significance level of 1% ?
(c) [7pt] Under the previous H_{0}, it holds that $\mathbb{P}\left(\hat{\beta}_{0}>1.90\right)=0.61$ and that $\mathbb{P}\left(\hat{\beta}_{0}<1.90\right)=0.39$. For which values of the significance level α, the null hypothesis H_{0} will be rejected with the given data?

