JUSTIFY YOUR ANSWERS!!

Please note:

- Allowed: calculator, course-content material and notes handwritten by you
- NO PHOTOCOPIED MATERIAL IS ALLOWED
- NO BOOK OR PRINTED MATERIAL IS ALLOWED
- If you use a result given as an exercise, you are expected to include (copy) its solution unless otherwise stated

NOTE: The test consists of five questions for a total of 10.5 points plus a bonus problem worth 1.5 pts. The score is computed by adding all the credits up to a maximum of 10

Exercise 1. [Composed randomness] (0.7 pts.) Consider IID random variables $(X_i)_{i\geq 1}$, with $X_i \sim \text{Exp}(\lambda)$, and a further independent variable $N \sim \text{Poisson}(\mu)$. Let $Y = \sum_{i=1}^{N} X_i$. Determine the variance of Y.

Exercise 2. [Classes of states] Consider a Markov chain with alphabet $\{1, 2, 3, 4\}$ and transition matrix:

$$\left(\begin{array}{rrrr} 1/4 & 3/4 & 0 & 0\\ 1/2 & 1/2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1/3 & 2/3 \end{array}\right)$$

- (a) (0.5 pts.) Determine the classes of states.
- (b) Prove that
 - -i- (0.3 pts.) 4 is transient,
 - -ii- (0.3 pts.) 3 is absorbing,
 - -iii- (0.3 pts.) 1 and 2 are recurrent.
- (c) (0.6 pts.) Determine *all* invariant measures (also called stationary measures).

Exercise 3. [Markov modelling I] A geyser emits boiling water following a random pattern. Each minute it is not emitting, the geyser has a 20% probability of emitting the following minute. Once emitting, the geyser has a 40% probability of continuing emitting during the next minute. The activity level corresponds, then, to a process $X_n = 1$ if the geyser is active at the *n*-th minute and 0 otherwise.

- (a) (0.4 pts.) Find the transition matrix of the process X_n .
- (b) (0.5 pts.) If the geyser is emitting now, find the probability that it will be emitting in four minutes.

- (c) (0.7 pts.) Find the proportion of time the geyser emits.
- (d) (0.7 pts.) The geyser is connected to a turbine that generates increasing power with the level of activity. There is no generation if the geyser does not emit for two consecutive minutes. If a non-active minute is followed by an emission, the turbine starts up and generates 1 Megawatt of power. If the geyser is active two consecutive minutes the turbine achieves maximum efficiency and generates 10 Megawatt. Finally, if an emission is followed by a non-active minute, the turbine manages to generate 3 Megawatt. Compute the mean power generated by the turbine.

Exercise 4. [Fun with Poisson processes] Let $\{N(t) : t \ge 0\}$ be a Poisson process with rate λ .

- (a) For $t, s \ge 0$, determine:
 - -i- (0.5 pts.) P(N(t) = 1, N(t+s) = 2). -ii- (0.8 pts.) E[N(t) N(t+s)].
- (b) Let T_n denote the *n*-th inter-arrival time and S_n the arrival time of the *n*-th event. Find:
 - -i- (0.5 pts.) $E[S_5 | S_2 = 3].$ -ii- (0.8 pts.) $E[T_3 | T_1 < T_2 < T_3].$
- (c) (0.8 pts.) Let S be a random variable independent of the Poisson process $\{N(t) : t \ge 0\}$. Show that

$$E(N(S^k)) = \lambda E(S^k)$$

for each $k \geq 1$.

Exercise 5. [Markov modelling II] A biological institute establishes a reserved sector for sick felines. Animals arrive at an exponential rate λ and they are so sick that they do not reproduce. Each animal dies at an independent exponential rate μ .

- (a) (0.5 pts.) Set the population of the sector as a birth-and-death model by determining the birth and death rates λ_n and μ_n .
- (b) (0.8 pts.) Determine the invariant measure of the model.
- (c) (0.8 pts.) If $\lambda = \mu$, find the proportion of time in which there are three or more animals in the sector.

Bonus problem

Bonus. [Alternative definition of Poisson processes.] (1.5 pt.) The objective of this exercise is to prove part of the characterization of a Poisson process of rate λ as a counting process N(t) of the form

$$N(t) = \max\{n : S_n \le t\} \tag{1}$$

where

$$S_n = \sum_{i=1}^n T_i \tag{2}$$

for IID $\text{Exp}(\lambda)$ random variables $T_i, i \ge 1$. Prove that (1) and (2) imply that

$$P(N(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

[*Hint*: Note that $\{N(t) = n\} = \{S_n \le t, T_{n+1} + S_n > t\}.$]

	1 1	1	2	1
Ta	h	e	1.	
1 a	U	l V	~	-

Table 211							
Discrete probability listribution	Probability mass function, $p(x)$	Moment generating function, $\phi(t)$	Mean	Variance			
Binomial with parameters $n, p, 0 \le p \le 1$	$ x = 0, 1, \dots, n $	$pe^t + (1-p))^n$	пр	np(1-p)			
Poisson with parameter $\lambda > 0$	$x!'' x = 0, 1, 2, \dots$	$\sup\{\lambda(e^t - 1)\}$ pe^t	λ 1	$\frac{1-p}{p^2}$			
Geometric with parameter $0 \le p \le 1$	$p(1-p)^{x-1},$ $x = 1, 2, \dots$	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	p ²			
	Table 2.2						
Continuous probability distribution	Probability density function, $f(x)$	Moment generating function, ϕ	g (t) Mean	-			
Uniform over (a, b)	$f(x) = \begin{cases} \frac{1}{b-a}, \ a < x < b\\ 0, & \text{otherwise} \end{cases}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$	_	$\frac{(b-a)^2}{12}$			
Exponential with	$f(x) = \begin{cases} \lambda e^{-\lambda x}, \ x > 0\\ 0, \qquad x < 0 \end{cases}$	$rac{\lambda}{\lambda-t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$			
parameters	$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{n-1}}{(n-1)!}, & x \ge \\ 0, & x < \end{cases}$	$ \begin{array}{c} 0 \\ 0 \end{array} \left(\frac{\lambda}{\lambda - t}\right)^n $	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$			
$(n, \lambda), \lambda > 0$ Normal with parameters	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \\ \times \exp\{-(x-\mu)^2/2\alpha\}$	$\exp\left\{\mu t + \frac{2}{3}\right\}$	$\left.\frac{\sigma^2 t^2}{2}\right\} \mu$	σ^2			
(μ, σ^2)	$\exp\{-(x-\mu)/2x \\ -\infty < x < \infty$						