Uitwerkingen Oefen Deeltentamen 2 Inleiding Financiele Wiskunde, 2011-12

1. Consider a 2-period binomial model with $S_{0}=100, u=1.2, d=0.7$, and $r=0.1$. Consider now an Asian American put option with expiration $N=2$, and intrinsic value $G_{n}=95-\frac{S_{0}+\cdots+S_{n}}{n+1}, n=0,1,2$.
(a) Determine the price V_{n} at time $n=0,1$ of this American option.
(b) Find the optimal exercise time $\tau^{*}\left(\omega_{1} \omega_{2}\right)$ for all $\omega_{1} \omega_{2}$.
(c) Suppose it is possible to buy this option at a price $C>V_{0}$, where V_{0} is your answer from part (a). Construct an explicit arbitrage strategy.

Solution (a): Note that the risk neutral probbaility is $\widetilde{p}=4 / 5$ and $\widetilde{q}=1 / 5$. The price process is given by
$S_{0}=100, S_{1}(H)=120, S_{1}(T)=70, S_{2}(H H)=144, S_{2}(H T)=S_{2}(T H)=84, S @(T T)=49$.
The intrinsic value process is given by

$$
\begin{gathered}
G_{0}=-5, G_{1}(H)=-15, G_{1}(T)=10 \\
G_{2}(H H)=-26.33, G_{2}(H T)=-6.33, G_{2}(T H)=10.33, G_{2}(T T)=22
\end{gathered}
$$

The payoff at time 2 is given by

$$
V_{2}(H H)=V_{2}(H T)=0, V_{2}(T H)=10.33, V_{2}(T T)=22 .
$$

Applying the American algorithm, we get

$$
\begin{gathered}
V_{1}(H)=\max \left(-15, \frac{1}{1.1}\left[\frac{4}{5} \times 0+\frac{1}{5} \times 0\right]\right)=0 . \\
V_{1}(T)=\max \left(10, \frac{1}{1.1}\left[\frac{4}{5} \times 10.33+\frac{1}{5} \times 22\right]\right)=\max (10,11.513)=11.513 . \\
V_{0}=\max \left(-5, \frac{1}{1.1}\left[\frac{4}{5} \times 0+\frac{1}{5} \times 11.513\right]\right)=\max (-5,2.093)=2.093 .
\end{gathered}
$$

Solution (b): The optimal exercise time is given by

$$
\tau^{*}(H H)=\tau^{*}(H T)=\infty, \tau^{*}(T H)=\tau^{*}(T T)=2 .
$$

Solution (c): Suppose it is poosible to buy the option for price $C>V_{0}=2.093$. Then at time zero sell the option for C, use $V_{0}=2.093$ to start a self-financing, and deposit $C-0.293$ in the money market. To describe explicitly we first find

$$
\begin{gathered}
\Delta_{0}=\frac{V_{1}(H)-V_{1}(T)}{S_{1}(H)-S_{1}(T)}=-0.23026 \\
\Delta_{1}(H)=\frac{V_{2}(H H)-V_{2}(H T)}{S_{2}(H H)-S_{2}(H T)}=0, \Delta_{1}(T)=\frac{V_{2}(T H)-V_{2}(T T)}{S_{2}(T H)-S_{2}(T T)}=-0.33343 .
\end{gathered}
$$

So at time zero, the self financing portfolio has value

$$
X_{0}=2.093=\Delta_{0} S_{0}+25.119
$$

where $X_{0}-\Delta_{0} S_{0}=25.119$ is the money market part.
at time 1 , if $\omega_{1}=H$, then

$$
X_{1}(H)=\Delta_{0} S_{1}(H)+1.1(25.119)=0=V_{1}(H) .
$$

In this case we do not need to adjust our portfolio and at time $2, X_{2}(H H)=0=$ $V_{2}(H H)$. If $\omega_{1}=T$, then

$$
X_{1}(T)=\Delta_{0} S_{1}(T)+1.1(25.119)=11.513=V_{1}(T) .
$$

If the buyer of the option decides to exercise, he gets 10 , so you are left with

$$
11.513-10+1.1(C-2.093)>0
$$

If the buyer does not exercise, then you adjust your wealth as follows

$$
X_{2}(T)=11.513=\Delta_{1}(T) S_{1}(T)+34.8531
$$

At time 2, your wealth is

$$
X_{2}(T T)=\Delta_{1}(T) S_{2}(T T)+1.1(34.8531)=22
$$

which equals the payoff of the buyer. You are left with $(1.1)^{2}(C-2.093)>0$.
2. Consider the binomial model with up factor $u=2$, down factor $d=1 / 2$ and interest rate $r=1 / 4$. Consider a perpetual American put option with $S_{0}=8$ and strike price $K=10$.
(a) Suppose the buyer of the option uses the strategy of exercising the first time the price drops to 1 euro. What is then the price at time 0 of such an option?
(b) What is the probability that the price reaches 16 euros for the first time at time $n=5$?

Solution (a): The buyer is using the exercise policy τ_{-3}. Hence, the price at tome 0 should be

$$
\begin{aligned}
V_{0}=V^{\tau_{-3}} & =\widetilde{E}\left(\left(\frac{4}{5}\right)^{\tau_{-3}}\left(10-S_{\tau-3}\right)\right) \\
& =\left(\frac{1}{2}\right)^{3}(10-1)=\frac{9}{8} .
\end{aligned}
$$

Solution (b): The probability that the price reaches 16 for the first time at time 5 is equal to the $P\left(\left\{\tau_{1}=5\right\}\right)$. By Theorem5.2.5,

$$
P\left(\left\{\tau_{1}=5\right\}\right)=1 / 16
$$

3. Consider an American option with expiration date N, intrinsic value process $G_{0}, G_{1}, \cdots, G_{N}$, and price process $V_{0}, V_{1}, \cdots, V_{N}$. Note that

$$
V_{n}=\max _{\tau \in \mathcal{S}_{n}} \widetilde{E}_{n}\left[\mathbf{1}_{\{\tau \leq N\}} \frac{G_{\tau}}{(1+r)^{\tau-n}}\right],
$$

for $n=0,1, \cdots, N$, where r is the interest rate.
(a) For $n=0,1, \cdots, N$, let $\tau_{n}^{*} \in \mathcal{S}_{n}$ be given by $\tau_{n}^{*}=\inf \left\{k \geq n: V_{k}=G_{k}\right\}$, if the infimum exists, otherwise $\tau_{n}^{*}=\infty$. Prove that

$$
\left\{\frac{V_{m \wedge \tau_{n}^{*}}}{(1+r)^{m \wedge \tau_{n}^{*}}}, m=n, \cdots, N\right\}
$$

is a martingale.
(b) Use part (a) to show τ_{n}^{*} is an optimal stopping time for V_{n}. i.e.

$$
V_{n}=\widetilde{E}_{n}\left[\mathbf{1}_{\left\{\tau_{n}^{*} \leq N\right\}} \frac{G_{\tau_{n}^{*}}}{(1+r)_{n}^{\tau_{n}^{*}-n}}\right] .
$$

Solution (a): For $m \geq n$, we have

$$
\frac{V_{m \wedge \tau_{n}^{*}}}{(1+r)^{m \wedge \tau_{n}^{*}}}=\frac{V_{m}}{(1+r)^{m}} \mathbb{I}_{\left\{\tau_{n}^{*} \geq m+1\right\}}+\frac{V_{\tau_{n}^{*}}}{(1+r)^{\tau_{n}}} \mathbb{I}_{\left\{\tau_{n}^{*} \leq m\right\}} .
$$

Now, the random variable $\mathbb{I}_{\left\{\tau_{n}^{*} \geq m+1\right\}}$ is known at time n , and on the set $\left\{\tau_{n}^{*} \geq m+1\right\}$, one has $m+1=(m+1) \wedge \tau_{n}^{*}$, and $V_{m}=\widetilde{E}_{m}\left(V_{m+1} /(1+r)\right)$. So that

$$
\frac{V_{m}}{(1+r)^{m}} \mathbb{I}_{\left\{\tau_{n}^{*} \geq m+1\right\}}=\widetilde{E}_{m}\left(\frac{V_{(m+1) \wedge \tau_{n}^{*}}}{(1+r)^{(m+1) \wedge \tau_{n}^{*}}} \mathbb{I}_{\left\{\tau_{n}^{*} \geq m+1\right\}}\right) .
$$

Also, the random variable $\frac{V_{\tau_{n}^{*}}}{(1+r)^{\tau_{n}^{*}}} \mathbb{I}_{\left\{\tau_{n}^{*} \leq m\right\}}$ is known at time m, and on the set $\left\{\tau_{n}^{*} \leq\right.$ $m\}, \tau_{n}^{*}=(m+1) \wedge \tau_{n}^{*}$. Hence,

$$
\frac{V_{\tau_{n}^{*}}}{(1+r)^{\tau_{n}^{*}}} \mathbb{I}_{\left\{\tau_{n}^{*} \leq m\right\}}=\widetilde{E}_{m}\left(\frac{V_{(m+1) \wedge \tau_{n}^{*}}}{(1+r)^{(m+1) \wedge \tau_{n}^{*}}} \mathbb{I}_{\left\{\tau_{n}^{*} \leq m\right\}}\right) .
$$

Thus,

$$
\frac{V_{m \wedge \tau_{n}^{*}}}{(1+r)^{m \wedge \tau_{n}^{*}}}=E_{m}\left(\frac{V_{(m+1) \wedge \tau_{n}^{*}}}{(1+r)^{(m+1) \wedge \tau_{n}^{*}}}\right),
$$

and therefore, $\left\{\frac{V_{m \wedge \tau_{n}^{*}}}{(1+r)^{m \wedge \tau_{n}^{*}}}, m=n, \cdots, N\right\}$ is a martingale.
Solution (b): Since $\tau_{n}^{*} \geq n$, then by part (a) we have,

$$
\begin{aligned}
\frac{V_{n}}{(1+r)^{n}}=\frac{V_{n \wedge \tau_{n}^{*}}}{(1+r)^{n \wedge \tau_{n}^{*}}} & =\widetilde{E}_{n}\left(\frac{V_{N \wedge \tau_{n}^{*}}}{(1+r)^{N \wedge \tau_{n}^{*}}}\right) \\
& =\widetilde{E}_{n}\left(\frac{V_{N \wedge \tau_{n}^{*}}}{(1+r)^{N \wedge \tau_{n}^{*}}} \mathbb{I}_{\left\{\tau_{n}^{*} \leq N\right\}}\right)+\widetilde{E}_{n}\left(\frac{V_{N \wedge \tau_{n}^{*}}}{(1+r)^{N \wedge \tau_{n}^{*}}} \mathbb{I}_{\left\{\tau_{n}^{*}=\infty\right\}}\right) \\
& =\widetilde{E}_{n}\left(\frac{G_{\tau_{n}^{*}}}{(1+r)^{\tau_{n}^{*}}} \mathbb{I}_{\left\{\tau_{n}^{*} \leq N\right\}}\right),
\end{aligned}
$$

where we have used that on the set $\left\{\tau_{n}^{*}=\infty\right\}$ one has $V_{N \wedge \tau_{n}^{*}}=V_{N}=0$, and on the set $\left\{\tau_{n}^{*} \leq n\right\}$ on has $V_{N \wedge \tau_{n}^{*}}=V_{\tau_{n}^{*}}=G_{\tau_{n}^{*}}$.
4. Consider a 3 -period (non constant interest rate) binomial model with interest rate process R_{0}, R_{1}, R_{2} defined by

$$
R_{0}=0, R_{1}\left(\omega_{1}\right)=0.02 f\left(\omega_{1}\right), R_{2}\left(\omega_{1}, \omega_{2}\right)=0.02 f\left(\omega_{1}\right) f\left(\omega_{2}\right)
$$

where $f(H)=3$, and $f(T)=2$. Suppose that the risk neutral measure is given by $\widetilde{P}(H H H)=\widetilde{P}(H T T)=1 / 10, \widetilde{P}(H H T)=\widetilde{P}(H T H)=1 / 5, \widetilde{P}(T H H)=$ $\widetilde{P}(T H T)=1 / 15, \widetilde{P}(T T H)=\widetilde{P}(T T T)=2 / 15$.
(a) Calculate the time one price $B_{1,3}$ of a zero coupon bond with maturity $m=3$.
(b) Consider a 3 -period interest rate swap. Find the 3-period swap rate $S R_{3}$, i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
(c) Consider a 3-period Cap that makes payments $C_{n}=\left(R_{n-1}-0.1\right)^{+}$at time $n=1,2,3$. Find Cap_{3}, the price of this Cap.

Solution (a): We first calcultate the values of R_{0}, R_{1}, R_{2} and D_{1}, D_{2}, D_{3} in the following tables:

$\omega_{1} \omega_{2}$	R_{0}	R_{1}	R_{2}
$H H$	0	0.06	0.18
$H T$	0	0.06	0.12
$T H$	0	0.04	0.12
$T T$	0	0.04	0.08

$\omega_{1} \omega_{2}$	$\frac{1}{1+R_{0}}$	$\frac{1}{1+R_{1}}$	$\frac{1}{1+R_{2}}$	D_{1}	D_{2}	D_{3}	\widetilde{P}
$H H$	1	$\frac{1}{1.06}$	$\frac{1}{1.18}$	1	$\frac{1}{1.06}$	$\frac{1}{1.2508}$	$\frac{3}{10}$
$H T$	1	$\frac{1}{1.06}$	$\frac{1}{1.12}$	1	$\frac{1}{1.06}$	$\frac{1}{1.1872}$	$\frac{3}{10}$
$T H$	1	$\frac{1}{1.10}$	$\frac{1}{1.12}$	1	$\frac{1}{1.04}$	$\frac{1}{1.1648}$	$\frac{2}{15}$
$T T$	1	$\frac{1}{1.04}$	$\frac{1}{1.08}$	1	$\frac{1}{1.04}$	$\frac{1}{1.1232}$	$\frac{4}{15}$

Note that D_{3} depends on the first two coin tosses only, and since $D_{1}=1$ we have

$$
\begin{aligned}
B_{1,3}(H)=\widetilde{E}_{1}\left(D_{3}\right)(H) & =D_{3}(H H) \widetilde{P}\left(\omega_{2}=H \mid \omega_{1}=H\right)+D_{3}(H T) \widetilde{P}\left(\omega_{2}=T \mid \omega_{1}=H\right) \\
& =\frac{1}{1.2508} \frac{1}{2}+\frac{1}{1.1872} \frac{1}{2}=0.8209
\end{aligned}
$$

and

$$
\begin{aligned}
B_{1,3}(T)=\widetilde{E}_{1}\left(D_{3}\right)(T) & =D_{3}(T H) \widetilde{P}\left(\omega_{2}=H \mid \omega_{1}=T\right)+D_{3}(T T) \widetilde{P}\left(\omega_{2}=T \mid \omega_{1}=T\right) \\
& =\frac{1}{1.1648} \frac{1}{3}+\frac{1}{1.1232} \frac{2}{3}=0.8797 .
\end{aligned}
$$

Solution (b): From Theorem 6.3.7, we know that

$$
S R_{3}=\frac{1-B_{0,3}}{B_{0,1}+B_{0,2}+B_{0,3}} .
$$

Now,

$$
\begin{aligned}
& B_{0,1}=\widetilde{E}\left(D_{1}\right)=1 \\
B_{0,2}= & \widetilde{E}\left(D_{2}\right)=\frac{1}{1.06} \widetilde{P}\left(\omega_{1}=H\right)+\frac{1}{1.04} \widetilde{P}\left(\omega_{1}=T\right) \\
& =\frac{1}{1.06} \frac{3}{5}+\frac{1}{1.04} \frac{2}{5}=0.9507, \\
B_{0,3}=\widetilde{E}\left(D_{3}\right) & =\frac{1}{1.2508} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=H\right)+\frac{1}{1.1872} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=T\right) \\
+ & \frac{1}{1.1648} \widetilde{P}\left(\omega_{1}=T, \omega_{2}=H\right)+\frac{1}{1.1232} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=H\right) \\
& =\frac{1}{1.2508} \frac{3}{10}+\frac{1}{1.1872} \frac{3}{10}+\frac{1}{1.1648} \frac{2}{15}+\frac{1}{1.1232} \frac{4}{15} \\
& =0.8444 .
\end{aligned}
$$

Thus,

$$
S R_{3}=\frac{1-B_{0,3}}{B_{0,1}+B_{0,2}+B_{0,3}}=\frac{1-0.8444}{2.7951}=0.0557 .
$$

Solution (c): From Definition 6.3 .8 we have

$$
\text { Cap }_{3}=\sum_{n=1}^{3} \widetilde{E}\left(D_{n}\left(R_{n-1}-0.1\right)^{+}\right) .
$$

We display the values of $\left(R_{n-1}-0.1\right)^{+}$in a table

$\omega_{1} \omega_{2}$	$\left(R_{0}-0.1\right)^{+}$	$\left(R_{1}-0.1\right)^{+}$	$\left(R_{2}-0.1\right)^{+}$
$H H$	0	0	0.08
$H T$	0	0	0.02
$T H$	0	0	0.02
TT	0	0	0

Thus,
$C a p_{3}=\widetilde{E}\left(D_{3}\left(R_{2}-0.1\right)^{+}\right)=\frac{1}{1.2508}(0.8) \frac{3}{10}+\frac{1}{1.1872}(0.02) \frac{3}{10}+\frac{1}{1.1648}(0.02) \frac{2}{15}=0.1992$.
5. Let M_{0}, M_{1}, \cdots, be the symmetric random walk, i.e. $M_{0}=0$, and $M_{n}=\sum_{i=1}^{n} X_{i}$, where

$$
X_{i}= \begin{cases}1, & \text { if } \omega_{i}=H \\ -1, & \text { if } \omega_{i}=T\end{cases}
$$

for $i \geq 1$. Let $m \geq 2$ be an integer, and let $k \in\{1, \cdots, m-1\}$. Define $Y_{0}=k$, and

$$
Y_{n+1}=\left(Y_{n}+X_{n+1}\right) \mathbb{I}_{\left\{Y_{n} \notin\{0, m\}\right\}}+Y_{n} \mathbb{I}_{\left\{Y_{n} \in\{0, m\}\right\}},
$$

for $n \geq 0$.
(a) Show that Y_{0}, Y_{1}, \cdots is a martingale.
(b) Let $T=\inf \left\{n \geq 1: Y_{n} \in\{0, m\}\right\}$. Using the the Optional Sampling Theorem show that $E\left(Y_{T}\right)=E\left(Y_{0}\right)=k$.
(c) Prove that $P\left(Y_{T}=0\right)=\frac{m-k}{m}$.

Solution (a): First note that Y_{n} is known at time n, hence $\left(Y_{n}\right)$ is an adjusted process. Since X_{n+1} is independent of the first n tosses, one has $E_{n}\left(X_{n+1}\right)=$ $E\left(X_{n+1}\right)=0$. Thus,

$$
E_{n}\left(Y_{n+1}\right)=Y_{n} \mathbb{I}_{\left\{Y_{n} \notin\{0, m\}\right\}}+Y_{n} \mathbb{I}_{\left\{Y_{n} \in\{0, m\}\right\}}=Y_{n} .
$$

Therefore, Y_{0}, Y_{1}, \cdots is a martingale.
Solution (b): First note that $Y_{n \wedge T}=Y_{n} \mathbb{I}_{\{T>n\}}+Y_{T} \mathbb{I}_{\{T \leq n\}}$, and by the Optional Sampling Theorem, we have $\left(Y_{n \wedge T}\right)$ is a martingale, so that

$$
E\left(Y_{n \wedge T}\right)=E\left(Y_{0}\right)=k
$$

Thus, for each n,

$$
\begin{aligned}
Y_{T} & =Y_{T} \mathbb{I}_{\{T \leq n\}}+Y_{T} \mathbb{I}_{\{T>n\}} \\
& =Y_{n \wedge T}-Y_{n} \mathbb{I}_{\{T>n\}}+Y_{T} \mathbb{I}_{\{T>n\}} .
\end{aligned}
$$

Taking expectations gives,

$$
E\left(Y_{T}\right)=k-E\left(Y_{n} \mathbb{I}_{\{T>n\}}\right)+E\left(Y_{T} \mathbb{I}_{\{T>n\}}\right)
$$

for all n. We show now that

$$
\lim _{n \rightarrow \infty} E\left(Y_{n} \mathbb{I}_{\{T>n\}}\right)=\lim _{n \rightarrow \infty} E\left(Y_{T} \mathbb{I}_{\{T>n\}}\right)=0 .
$$

On the set $\{T>n\}$, the random variable Y_{n} takes values in the set $\{1, \cdots, m-1\}$. Thus,

$$
\mathbb{I}_{\{T>n\}} \leq Y_{n} \mathbb{I}_{\{T>n\}} \leq(m-1) \mathbb{I}_{\{T>n\}} .
$$

Taking expectations gives,

$$
P\left(\{T>n\} \leq E\left(Y_{n} \mathbb{I}_{\{T>n\}}\right) \leq(m-1) P(\{T>n\})\right.
$$

Since $P(T<\infty)=1$ (Thoerem 5.2.2), taking limits in the above inequalities gives $\lim _{n \rightarrow \infty} E\left(Y_{n} \mathbb{I}_{\{T>n\}}\right)=0$. Now consider the random variable Y_{T}, it takes values in the set $\{0, m\}$, thus

$$
0 \leq Y_{T} \mathbb{I}_{\{T>n\}} \leq m \mathbb{I}_{\{T>n\}},
$$

so that for all n

$$
0 \leq E\left(Y_{T} \mathbb{I}_{\{T>n\}} \leq m P(\{T>n\}) .\right.
$$

Taking limits and using the fact that $P(T<\infty)=1$, we get $\lim _{n \rightarrow \infty} E\left(Y_{T} \mathbb{I}_{\{T>n\}}\right)=0$. This shows that $E\left(Y_{T}\right)=E\left(Y_{0}\right)=k$.

Solution (c): Note that Y_{T} takes only two values 0 and m. Let $p=P\left(Y_{T}=0\right)$, then $P\left(Y_{T}=m\right)=1-p$, and $E\left(Y_{T}\right)=m(1-p)$. On the other hand, by part (b) we have $E\left(Y_{T}\right)=k$, thus $m(1-p)=k$ implying that $P\left(Y_{T}=0\right)=p=\frac{m-k}{m}$.

