JUSTIFY YOUR ANSWERS

Allowed material: calculator, material handed out in class and handwritten notes (your handwriting). NO BOOK IS ALLOWED

NOTE: The test consists of four questions for a total of 10 points

Exercise 1. A saving plan is a sequence of n yearly payments for an amount C. At the end of the last payment the saver collects some good (car, house, lump sum of money) for the total value P_n of all the payments at the final time. The yearly (simple or effective) interest rate is r.

(a) (0.7 pts.) Prove that this final value is

$$P_n = C \frac{(1+r)^n - 1}{r}$$

(b) (0.7 pts.) You subscribe a saving plan for 10 years at a yearly interest of 5%. How many more years you should continue paying if you want at the end to collect twice P_{10} .

Exercise 2. (Discrete stochastic integrals and sub-martingales) Let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration on a probability space and let $(D_n)_{n\geq 0}$ and $(W_n)_{n\geq 0}$ be adapted processes. Let $(Y_n)_{n\geq 0}$ be the process defined by

$$Y_n = W_0 + \sum_{\ell=1}^n D_{\ell-1} \left(W_\ell - W_{\ell-1} \right)$$
(1)

Prove the following

- (a) (0.8 pts.) If $(W_n)_{n\geq 0}$ is a martingale, then so is $(Y_n)_{n\geq 0}$.
- (b) (0.8 pts.) If $D_n \ge 0$, then
 - -i- (0.8 pts.) $(Y_n)_{n\geq 0}$ is a super-martingale if so is $(W_n)_{n\geq 0}$.
 - -ii- (0.8 pts.) If $W_0 \ge 0$ and $(W_n)_{n\ge 0}$ is a sub-martingale, then so is $(Y_n^2)_{n\ge 0}$. [*Hint:* Use Jensen's inequality.]

Exercise 3. [European option with variable interest] A stock whose present value is $S_0 = 4$ evolves following a binomial model with u = 1.5 and d = 1/2; both possibilities having equal probability. The interest rate for the initial period is 5%, in each subsequent *i*-th period the interest jumps to 10% if $\omega_i = H$ and reverts to 5% if $\omega_i = T$. A European call option is established for 3 periods with strike value $K = S_0$ and payoff

$$V_3 = |S_3 - S_0|_+$$
.

Determine

- (a) (0.7 pt.) Determine the risk-neutral probability for three periods.
- (b) (0.8 pts.) The fair price of the option.
- (c) (0.8 pts.) The hedging strategy for the seller.
- (d) (0.8 pts.) The owner of the option decides to sell it at the end of the first period. Find the fair value for both values of ω_1 .

Exercise 4. [American option] Consider the same stock evolution as in the previous exercise, but with a constant interest of 5%. An American put option is established for 3 periods with strike value $K = S_0$, intrinsic payoff

$$G_n = S_0 - S_n$$
, $n = 0, 1, 2$,

and final payoff

$$V_3 = |S_0 - S_3|_+ . (2)$$

- (a) (0.8 pts.) Determine the fair price V_0 of the option.
- (b) (0.8 pts.) The optimal exercise time τ^* for the buyer.
- (c) (0.8 pts.) Show that V_0 and τ^* satisfy the identity

$$V_0 = \widetilde{E} \Big[\mathbb{I}_{\{\tau^* \le 3\}} \frac{G_{\tau^*}}{R_0 \cdots R_{\tau^* - 1}} \Big] ,$$

(d) (0.7 pts.) Prove that the fair value of the preceding American option is larger or equal than the value of an European option with the same payoff (2).