INSTITUTE OF MATHEMATICS, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UU. MADE AVAILABLE IN ELECTRONIC FORM BY THE \mathcal{BC} OF A-Eskwadraat IN 2004/2005, THE COURSE WISM424 WAS GIVEN BY J. VAN OOSTEN.

Set Theory (WISM424) July 6, 2005

Advice: start on those problems you can do right away; then, start thinking about the others. Good luck!

Exercise 1

We recall the cardinal numbers \beth_{α} (for each ordinal number α), recursively defined by: $\beth_0 = \omega$; $\beth_{\alpha+1} = 2^{\beth_{\alpha}}$; $\beth_{\gamma} = \sup{\{\beth_{\beta} \mid \beta < \gamma\}}$ if γ is a limit ordinal.

A cardinal κ is called a *strong limit* if κ is uncountable and for all $\lambda, \mu < \kappa, \lambda^{\mu} < \kappa$. Show that the following three conditions are equivalent for a cardinal κ :

- a) κ is a strong limit;
- b) For all $\lambda < \kappa, 2^{\lambda} < \kappa;$
- c) There is a limit ordinal $\alpha > 0$ such that $\kappa = \beth_{\alpha}$

Exercise 2

A Luzin set is an uncountable subset L of \mathbb{R} such that for every closed and nowhere dense subset A of \mathbb{R} , $L \cap A$ is countable.

- a) Show that the collection of all closed and nowhere dense subsets of \mathbb{R} has cardinality 2^{ω} .
- b) Assuming the Continuum Hypothesis, show that a Luzin set exists. [Hint: use an enumeration $\{K_{\alpha} \mid \alpha < \omega_1\}$ of the closed nowhere dense subsets of \mathbb{R} . Use the Baire category theorem, which states that the union of countably many closed nowhere dense sets has empty interior]

Exercise 3

- a) Prove that the intersection of two clubs (closed, unbounded subsets of ω_1) is again a club.
- b) An ordinal $\alpha < \omega_1$ is called a *limit of limits* if there is a strictly increasing sequence $\gamma_0 < \gamma_1 < \cdots$ of limit ordinals such that $\alpha = \sup\{\gamma_n \mid n < \omega\}$. Prove that the set of all limits of limits is a stationary subset of ω_1 .

Exercise 4

In this exercise, M is a countable transitive model of ZFC and P is a poset in M. M^P is the set of P-names in M.

a) Suppose that $A \epsilon M$ is an antichain in P and for each $q \epsilon A$ a name $\sigma_q \epsilon M^P$ is given such that the sequence $(\sigma_q)_{q \epsilon A}$ is in M. Define the following P-name:

$$\pi = \bigcup_{q \in A} \{ (\tau, r) \, | \, r \le q \land (r \Vdash \tau \epsilon \sigma_q) \land (\tau \epsilon \operatorname{dom}(\sigma_q)) \}$$

Show that for every $q \epsilon A$, $q \Vdash \pi = \sigma_q$.

b) Let $\phi(x, y)$ be a ZF-formula, $\tau \epsilon M^P$ and $p \epsilon P$. Suppose $p \Vdash \exists y \phi(y, \tau)$. Show that there is a $\pi \epsilon M^P$ such that $p \Vdash \phi(\pi, \tau)$. [Hint: show that there is a subset A of P which is maximal with respect to the properties that $A \epsilon M$, $\forall a \epsilon A (a \leq p)$, A is an antichain in P, and $\forall a \epsilon A \exists \sigma_a \epsilon M^P (a \Vdash \phi(\sigma_a, \tau))$. Apply part a).]