Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Midterm Ergodic Theory 2009

Due Date: April 21, 2009- You are not allowed to discuss this exam with your fellow students

1. Let (X, \mathcal{F}, μ, T) be a measure preserving system, and assume T is ergodic. Let f be a measurable real valued function on X such that $\mu(\{x \in X : f(x) = 0\}) > 0$. Define g on X by g(x) = f(x) - f(Tx). Prove that

$$\mu(\{x : \sum_{i=0}^{n-1} g(T^{i}x) = f(x) \text{ for infinitely many } n \ge 1\}) = 1.$$

- 2. Let $\theta \in (0, 1)$ be irrational.
 - (a) Consider the probability space $([0, 1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ -algebra and λ is Lebesgue measure restricted to [0, 1). Let $T : [0, 1) \to [0, 1)$ be translation by $\theta \in (0, 1)$, i.e. $Tx = x + \theta \mod 1$. Determine explicitly the induced transformation T_A of T on the interval $A = [0, \theta)$.
 - (b) Consider the probability space $([0, 1] \times [0, 1], \mathcal{B} \times \mathcal{B}, \lambda \times \lambda)$, where $\mathcal{B} \times \mathcal{B}$ is the twodimesional Borel σ -algebra and $\lambda \times \lambda$ is the two-dimensional Lebesgue measure restricted to $[0, 1] \times [0, 1]$. Prove that the transformation $S : [0, 1] \times [0, 1] \rightarrow$ $[0, 1] \times [0, 1]$ given by $S(x, y) = (x + \theta \mod 1, x + y \mod 1)$ is measure preserving and ergodic with respect to $\lambda \times \lambda$.

(Hint: The Fourier series $\sum_{n,m} c_{n,m} e^{2\pi i (nx+my)}$ of a function $f \in L^2([0,1] \times [0,1], \mathcal{B} \times \mathcal{B}, \lambda \times \lambda)$ satisfies $\sum_{n,m} |c_{n,m}|^2 < \infty$.

3. Consider $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Lebesgue σ -algebra, and λ is Lebesgue measure. Let $T : [0,1) \to [0,1)$ be defined by

$$Tx = \begin{cases} n(n+1)x - n, & x \in [\frac{1}{n+1}, \frac{1}{n}), \\ 0, & x = 0. \end{cases}$$

Define $a_1: [0,1) \to [2,\infty]$ by

$$a_1 = a_1(x) = \begin{cases} n+1 & \text{if } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right), \ n \ge 1\\ \infty & \text{if } x = 0. \end{cases}$$

For $n \ge 1$, let $a_n = a_n(x) = a_1(T^{n-1}x)$.

(a) Show that T is measure preserving with respect to Lebesgue measure λ .

(b) Show that for λ a.e. x there exists a sequence a_1, a_2, \cdots of positive integers such that $a_i \geq 2$ for all $i \geq 1$, and

$$x = \frac{1}{a_1} + \frac{1}{a_1(a_1 - 1)a_2} + \dots + \frac{1}{a_1(a_1 - 1)\cdots a_{k-1}(a_{k-1} - 1)a_k} + \dots$$

- (c) Consider the dynamical system (X, \mathcal{F}, μ, S) , where $X = \{2, 3, \dots\}^{\mathbb{N}}$, \mathcal{F} the σ -algebra generated by the cylinder sets, S the left shift on X, and μ the product measure with $\mu(\{x : x_1 = j\}) = \frac{1}{j(j-1)}$. Show that $([0,1), \mathcal{B}, \lambda, T)$ and (X, \mathcal{F}, μ, S) are isomorphic.
- (d) Show that T is strongly mixing.
- (e) Consider the product space $([0,1) \times [0,1), \mathcal{B} \times \mathcal{B}, \lambda \times \lambda)$. Define the transformation $\mathcal{T}: [0,1) \times [0,1) \to [0,1) \times [0,1)$ by

$$\mathcal{T}(x,y) = \begin{cases} (Tx, \frac{y+n}{n(n+1)}) & \text{if } x \in \left[\frac{1}{n+1}, \frac{1}{n}\right) \\ (0,0) & \text{if } x = 0. \end{cases}$$

Show that $([0,1)\times[0,1), \mathcal{B}\times\mathcal{B}, \lambda\times\lambda, \mathcal{T})$ is a natural extension of $([0,1), \mathcal{B}, \lambda, \mathcal{T})$.

4. Consider $([0,1), \mathcal{B})$, where \mathcal{B} is the Lebesgue σ -algebra. Let $T : [0,1) \to [0,1)$ be the *Continued fraction* transformation, i.e., T0 = 0 and for $x \neq 0$

$$Tx = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor.$$

It is well-known that T is measure preserving and ergodic with respect to the Gaussmeasure μ given by

$$\mu(B) = \int_B \frac{1}{\log 2} \frac{1}{1+x} dx$$

for every Lebesque set *B*. For each $x \in [0, 1)$ consider the sequence of digits of x defined by $a_n(x) = a_n = \lfloor \frac{1}{T^{n-1}x} \rfloor$. Let λ denote the normalized Lebesgue measure on [0, 1).

- (a) Show that $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \infty \lambda$ a.e.
- (b) Show that

$$\lim_{n \to \infty} (a_1 a_2 \dots a_n)^{1/n} = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k(k+2)} \right)^{\frac{\log k}{\log 2}}$$

 λ a.e.