Midterm Ergodic Theory 2009

Due Date: April 21, 2009- You are not allowed to discuss this exam with your fellow students

1. Let (X, \mathcal{F}, μ, T) be a measure preserving system, and assume T is ergodic. Let f be a meausrable real valued function on X such that $\mu(\{x \in X: f(x)=0\})>0$. Define g on X by $g(x)=f(x)-f(T x)$. Prove that

$$
\mu\left(\left\{x: \sum_{i=0}^{n-1} g\left(T^{i} x\right)=f(x) \text { for infinitely many } n \geq 1\right\}\right)=1
$$

2. Let $\theta \in(0,1)$ be irrational.
(a) Consider the probability space $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ-algebra and λ is Lebesgue measure restricted to $[0,1)$. Let $T:[0,1) \rightarrow[0,1)$ be translation by $\theta \in(0,1)$, i.e. $T x=x+\theta \bmod 1$. Determine explicitly the induced transformation T_{A} of T on the interval $A=[0, \theta)$.
(b) Consider the probability space $([0,1] \times[0,1], \mathcal{B} \times \mathcal{B}, \lambda \times \lambda)$, where $\mathcal{B} \times \mathcal{B}$ is the twodimesional Borel σ-algebra and $\lambda \times \lambda$ is the two-dimensional Lebesgue measure restricted to $[0,1] \times[0,1]$. Prove that the transformation $S:[0,1] \times[0,1] \rightarrow$ $[0,1] \times[0,1]$ given by $S(x, y)=(x+\theta \bmod 1, x+y \bmod 1)$ is measure preserving and ergodic with respect to $\lambda \times \lambda$.
(Hint: The Fourier series $\sum_{n, m} c_{n, m} e^{2 \pi i(n x+m y)}$ of a function $f \in L^{2}([0,1] \times[0,1], \mathcal{B} \times$ $\mathcal{B}, \lambda \times \lambda)$ satisfies $\sum_{n, m}\left|c_{n, m}\right|^{2}<\infty$.
3. Consider $([0,1), \mathcal{B}, \lambda)$, where \mathcal{B} is the Lebesgue σ-algebra, and λ is Lebesgue measure. Let $T:[0,1) \rightarrow[0,1)$ be defined by

$$
T x= \begin{cases}n(n+1) x-n, & x \in\left[\frac{1}{n+1}, \frac{1}{n}\right), \\ 0, & x=0 .\end{cases}
$$

Define $a_{1}:[0,1) \rightarrow[2, \infty]$ by

$$
a_{1}=a_{1}(x)= \begin{cases}n+1 & \text { if } x \in\left[\frac{1}{n+1}, \frac{1}{n}\right), n \geq 1 \\ \infty & \text { if } x=0\end{cases}
$$

For $n \geq 1$, let $a_{n}=a_{n}(x)=a_{1}\left(T^{n-1} x\right)$.
(a) Show that T is measure preserving with respect to Lebesgue measure λ.
(b) Show that for λ a.e. x there exists a sequence a_{1}, a_{2}, \cdots of positive integers such that $a_{i} \geq 2$ for all $i \geq 1$, and

$$
x=\frac{1}{a_{1}}+\frac{1}{a_{1}\left(a_{1}-1\right) a_{2}}+\cdots+\frac{1}{a_{1}\left(a_{1}-1\right) \cdots a_{k-1}\left(a_{k-1}-1\right) a_{k}}+\cdots .
$$

(c) Consider the dynamical system (X, \mathcal{F}, μ, S), where $X=\{2,3, \cdots\}^{\mathbb{N}}, \mathcal{F}$ the σ-algebra generated by the cylinder sets, S the left shift on X, and μ the product measure with $\mu\left(\left\{x: x_{1}=j\right\}\right)=\frac{1}{j(j-1)}$. Show that $([0,1), \mathcal{B}, \lambda, T)$ and (X, \mathcal{F}, μ, S) are isomorphic.
(d) Show that T is strongly mixing.
(e) Consider the product space $([0,1) \times[0,1), \mathcal{B} \times \mathcal{B}, \lambda \times \lambda)$. Define the transformation $\mathcal{T}:[0,1) \times[0,1) \rightarrow[0,1) \times[0,1)$ by

$$
\mathcal{T}(x, y)= \begin{cases}\left(T x, \frac{y+n}{n(n+1)}\right) & \text { if } x \in\left[\frac{1}{n+1}, \frac{1}{n}\right) \\ (0,0) & \text { if } x=0 .\end{cases}
$$

Show that $([0,1) \times[0,1), \mathcal{B} \times \mathcal{B}, \lambda \times \lambda, \mathcal{T})$ is a natural extension of $([0,1), \mathcal{B}, \lambda, T)$.
4. Consider $([0,1), \mathcal{B})$, where \mathcal{B} is the Lebesgue σ-algebra. Let $T:[0,1) \rightarrow[0,1)$ be the Continued fraction transformation, i.e., $T 0=0$ and for $x \neq 0$

$$
T x=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor .
$$

It is well-known that T is measure preserving and ergodic with respect to the Gaussmeasure μ given by

$$
\mu(B)=\int_{B} \frac{1}{\log 2} \frac{1}{1+x} d x
$$

for every Lebesque set B. For each $x \in[0,1)$ consider the sequence of digits of x defined by $a_{n}(x)=a_{n}=\left\lfloor\frac{1}{T^{n-1} x}\right\rfloor$. Let λ denote the normalized Lebesgue measure on $[0,1)$.
(a) Show that $\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\infty \lambda$ a.e.
(b) Show that

$$
\lim _{n \rightarrow \infty}\left(a_{1} a_{2} \ldots a_{n}\right)^{1 / n}=\prod_{k=1}^{\infty}\left(1+\frac{1}{k(k+2)}\right)^{\frac{\log k}{\log 2}}
$$

λ a.e.

